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Microstripline and Coplanar Waveguide Resonator Permittivity and Conductivity Studies

e Microstripline resonator offers a simple geometry to probe surface states

e Electric field norm calculated at f = 3.75 GHz resonance
e Baseline model with spatially independent permittivity, €,

e Electric permittivity a uniform function of x, y: £.(x, y) = sin(w,x) sin(w,y)

Electric Field
Norm

e Troughs represent through-holes/vias or macroscopic defects

e Transmission measurements reflect changes in ¢.(x,y) and correspond to
resonant shifts due to noise in more detailed models

[

=@=321, eps_r

“#=821, eps_r(x.y)
=¢S821, 1.1 eps_r(x.y)
“H#=821, 1.05 eps_r(x,y)
=521, 1.01 eps_r(xy)
=0=821, 1.25 eps_r(x,y)
12 821, 1.2 eps_r(x.y)

200

Frequency (GHz)

e Coplanar waveguide modeled with air box scattering boundary condition

e Current source excitation lumped circuit model with lumped circuit element
representation of the coplanar waveguide as a transmission line
e Input and reflected electric field Gaussian pulses
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e Extracted lumped circuit parameters as functions of time for ¢.(t) and o(t)
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Interface Models of Coplanar Waveguide as Participation Ratio Study Candidates

Model of intentionally oxidized coplanar waveguide with extrinsic concentration

of two level systems (TLS's) supplied by 1 pm thick SiN layer
[J. Gao, PhD Thesis, Caltech, 2008]

e Increased resolution model of interface oxide layers (100 nm
on 1 um aluminum conductors for calculation of
participation ratios, and as a host for TLS studies
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e Participation ratios calculated for SiN and modeled instrinsic oxides
[J. Wenner et al. APL 99, 113513 (2011)]
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e Swept mesh features used to resolve e Electric field norm cross section of
oxide layers and neighboring domains xz-plane to illustrate intensity of the
field excitation

Coplanar Waveguide and Interdigitated Capacitor as Magnetic Dipole Hosts

e Extension of high resolutioin coplanar waveguide model to include a small,
dense population of magnetic dipoles as artifical TLS's
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e Interdigitated capacitor (IDC) as a large area, lumped element capacitor similar to

those used in transmon qubits [J. Koch et al, PRL A. 76, 0423195 (2007)]

e Magnetic dipoles are dispersed over the surface of the conducting fingers and substrate -

with a precession frequency set by the wavevector, k

S21, and other figures for measuring the loss due
magnetic diples on a small surface of the cpw.

to precessing

e Antialigned array of dipoles with the orientations shown be
coefficient figures (S,;) for the IDC driven by an incident pl
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All Metal Dielectric-free Superconducting Resonator

e Systematic investigation of noise sources in superconducting devices

Split Ring Resonator (SRR)
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Double-slit SRR

Multiple SRR

e To the greatest extent possible, eliminate material interfaces from resonator
¢ Dielectric-metal, dielectric-vacuum, oxide-metal, oxide-dielectric, etc.
e Dielectric materals can be incorporated into the resonator design in a
controlled fashion to facilitate system study of TLS noise
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e Two superconducting dual split ring resonators and sample holder

e Sample box inserted into adiabatic demanetization refridgerator (ADR) for

first cool down
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