

Voltage vs. Flux Biased Couplers

Voltage-controlled coupler

- 2nd order sensitive to voltage bias
- No heating introduced by voltage bias
- Minimal cross-talk expected
- Not part of cQED fab, yet
- Dielectric loss from 2DEG possible

$V_4 V_3 V_5$ ∇

Capacitive Coupler Terminal Labeling

Flux-tunable coupler¹

- ¹ Adapted from J. Martinis, SQuInT 2020

Device Design & Semiconductor Simulations							
$ \frac{Au}{100 \text{ nm}} + Au}{100 \text{ nm}} + SiO_2 + SiO_2$	 III-V materials stack bas made by the Shabani gre Electron densities calcul equilibrium solutions to drift-diffusion equations Fermi-Dirac statistics in 2DEG confinement includ density gradients modify equilibrium electron density equilibrium electron densities Electrostatic charge con applied to InAIAs, SiO₂, dielectric regions Electron densities with gradients with gradients with gradients and three gates. Source bias End-to-end capacitance air-gap capacitors (enlar aspect ratio in COMSOI Wickramasinghe et al., Applied Physics Lett Ancona, Journal of Computational Electroni 						

nmaterise@mines.edu

Tunable Couplers for Superconducting Qubits

Nick Materise¹, Matthieu Dartiailh², Javad Shabani², Eliot Kapit¹

¹Colorado School of Mines, Department of Physics ²Center for Quantum Phenomena, Department of Physics, New York University

gate biases (a) V on center I-3 V on all set to 10 mV. limited by rged to reduce L simulations) cers 113, 262104 (2018)] ics **10**, 65 (2011)

Estimation of dielectric									
$1055-1111120 I_1$		t _i [nm]	<i>p</i> _i	$ an \delta_i$	$T_1 \ [\mu s]$				
$T_1^{-1} = \frac{\omega}{\Omega} = \omega \sum \frac{p_J}{\Omega} + \Gamma_0$	InGaAs	10	2.08E-5	4.8E-5	3190				
$- Q \qquad \frac{j}{j} Q_j$	InAs	4	3.18E-5	4.8E-5	20800				
$Q_i^{-1} = an \delta_i$	InGaAs	4	2.86E-5	4.8E-5	23200				
$\int \int \mathbf{r} ^2 d\mathbf{r}$	InAlAs	20	5.64E-4	4.8E-5	1180				
$t_j \varepsilon_{1,j} \int_{S_i} \mathbf{E} ^- dS$	SiO_2^7	50	4.44E-3	2.00E-3	3.58				
$p_j = \frac{1}{\sum_{V} E ^2 dV}$	Total	-	-	-	3.57				
III-V loss tangents approximated ⁴ [Wenner et al., Applied Physics Letters 99, 113513 (2011)] Wang et al., Applied Physics Letters 107, 162601 (2015)]									
with GaAs ⁶ ⁶ [McRae et al., arXiv e-prints, arXiv:2009.10101 (2020)] ⁷ [Li et al., IEEE Transactions on Applied Superconductivity 23, 1501									
Limited by SiO. ponding				,					

• Limited by SiO_2 , pending measurement of III-Vs

Solve Poisson's equation with the charge continuity equation in 2D $-\nabla \cdot \boldsymbol{d} \left(\varepsilon_0 \nabla \boldsymbol{V} - \boldsymbol{\mathsf{P}}\right) = \rho$ Extract Maxwell capacitance matrix $\langle C_{11} \ C_{12} \ \ldots \ C_{1N} \rangle \langle V_1 \rangle$ $C_{21} \ C_{22} \ \ldots \ C_{2N}$ $\langle C_{N1} \ C_{N2} \ \dots \ C_{NN} \rangle \langle V_N \rangle$ Solve time harmonic equations $\nabla \cdot (\sigma \mathsf{E} + \mathsf{J}_e) + i\omega\rho = \mathbf{0},$ $\nabla \cdot \mathsf{D} = \rho$ Use terminal current, voltage solutions to compute admittance matrix, Y $\langle Y_{11} | Y_{12} \dots Y_{1N} \rangle \langle I_1 \rangle$ $Y_{21} \ Y_{22} \ \ldots \ Y_{2N}$ $Y_{N1} Y_{N2} \ldots Y_{NN} / \langle I_N \rangle$ $\mathsf{Y} = \mathsf{G} + i\omega\mathsf{C}$ C [aF] 150 125 100 3 4 5 1 2 3 4 5 G [pS] 25 20 1 2 3 4 5

4 (2013)]

Mode No.	$\omega/2\pi$ [GHz]	Q		$\chi/2\pi$ [MHz]		
1 (d)	5.667	4.5E8	226	62.5	0.965	
2 (d)	5.838	1.3E9	62.5	226	1.11	
3 (d)	8.614	1.8E13	0.965	1.11	0.002	
1 (c)	5.669	4.5E8	223	67.1	0.974	
2 (c)	5.840	1.3E9	67.1	223	1.12	
3 (c)	8.612	1.8E13	0.974	1.12	0.002	
HFSS Mod	lel with Lu					
Elem	ent Insets		 HFSS E Elemen Josephs capacit 	Eigenmodes ts ^{8,9} son junction ances as in	$s \rightarrow \text{EPR} \rightarrow \text{Matrix}$ n inductances, puts	
			 Coupler modeled as lumped element capacitor Parametric sweep over the coupler capacitance to extract self- and cross-Kerr matrix elements 			
HFSS Eiger	nmode So	lutions	Retain	anharmoni	rities for exchange	
E Field [V/m] 1.13E+12 1.05E+12 9.76E+11 9.01E+11 8.26E+11 7.51E+11		 Retain anharmonicities for exchange interaction matrix elements Extract exchange Q_iQ_j interaction matrix elements C⁻¹/2 from^{10,11} 				
6.77E+11 6.02E+11 5.27E+11 4.52E+11 3.77E+11 3.02E+11 2.28E+11			$H = \frac{1}{2}$	$\frac{1}{2} \mathbf{Q}^T \mathbf{C}^{-1} \mathbf{Q} + \left(\begin{array}{c} C_1 + C_3 \\ C_1 + C_3 \end{array} \right) $	$+\sum_{j} E_{J_{j}} \left(1 - \cos \varphi_{j}\right)$ $-C_{3}$	
1.53E+11 7.80E+10 3.13E+09 (C)	(d)	(e)	$C_k = \frac{1}{2}$	$\frac{e^2}{2E_C} \simeq -\frac{e^2}{2\alpha}$	$\frac{e^2}{e_k} = -\frac{e^2}{2\chi_{kk}}$	
Exchange Ir	iteraction	Matrix	 Exchan 	ge interact	ion matrix elements	
FI	ements		recover	$\approx 160 \text{ on}/c$	off ratio	
Qubit Index M	latrix Elements	[MHz]	⁸ [Minev, arXiv e-	prints, arXiv:1902.	10355 (2019)]	
1 (d) 22	26	0.0005	⁹ [Minev et al., arXiv e-prints, arXiv:2010.00620 (2020)]			
2 (d) 0.	0005	226	¹ [Orlando et al., ¹¹ [Koch et al. P	, Phys. Rev. B 60 , hys. Rev. A 76 02	15398 (1999)] 42319 (2007)]	
1 (c) 22	26	0.079			(,]	
2 (c) 0.	079	226				

Future Work

- Finish experimental measurements of loss in III-V materials

Acknowledgements

We acknowledge funding from the Graduate Fellowship for STEM Diversity, NSF grant No. PHY-1653820, ARO grant No. W911NF-18-1-0125 and LPS/ARO grant No. W911NF-18-1-0115.

EPR & Exchange Interaction Matrix Elements

EPR Matrix Elements

Begin testing tunable resonators with voltage-controlled III-V stack ► Fabricate and measure two qubits coupled by the III-V 2DEG coupler