Quantum Heat Engine Simulated on Superconducting Qubits

Classical vs. Quantum Heat Engines

Classical Otto Engine Cycle

(Internal Combustion)

[Quattroch, http://web.mit.edu/16.unified/www/
FALL/thermodynamics/notes/node26.html (2006) |
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Many Body Localization
(MBL) Engine Cycle

[Yunger Halpern et al., Phys.Rev.B 99, 024203 (2019) ]
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Quantum Heat and Work
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Near Ground State MBL Engine

» Near ground state configuration
minimizes excursions to other states

» Heating & cooling strokes maximize
and minimize energy exchange
between hot & cold baths

» Same efficiency as MBL engine

n=1-0etH / OmBL
» Need to quantify adiabatic timescales
for 7 - 7 and 7 — 7"

» Computed spectra for MBL / ETH

phases exhibits a modest gap ratio,
bounding the efficiency by ~ 0.84

» Chosen maximum disorder strength
has not been tested in hardware
(could cause undesirable heating due
to large currents on the flux lines)
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Bose Hubbard Model

Superfluid Phase

Hardware Mapping

Coupled Transmon Qubits
» Implements Bose Hubbard Model
» Defaults to Mott Insulator (J « U)

» External flux tuning can access the
disordered phase, control h;(t)
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» Generate disorder realizations {h;}
h{: € [hminp hmax]

» Exact diagonalization of ETH and
disordered (DIS) Hamiltonians
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» Adiabatic evolution from eigenstates
of Heth < Hpis
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» Compute fidelity F and residual
energy E.., averaged over disorders
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Multilevel Hamiltonian
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Experimental Device

9 A,

SALP Buizljigels

UUUE JIONIBSaY

0

Annealing Schedules
1.0+ 1.0

0.8

0.6

0.4

0.2

0.0 . | | | .
Time [1/T]

Results

Expansion Stroke(

Ny = 2

1.00
0.951
0.901
>
= 0.85
9]
S 0.80
L
0.751
0.701
0.651

delit
2 e =2 e e
U o N ®

©
N

Fidelity

O, N WM O
Residual Energy

2 =@
N W

Time [us]

Ny, =6

Q’Lb‘b‘b,\'

Time [us]

COLORADO

®

MINES

Model Parameters
J2m =10 MHz, U227 = 250 MHz, he[-10J, 10J]
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» Results confirm that the ground state to ground state transition (compression
stroke) reaches a higher fidelity in a shorter time compared to the first excited
to first excited state transition (expansion stroke)

» Residual energy density offers a spatiotemporal metric for evaluating the scaling
of both strokes' performance with system size and evolution time

» The required time to reach unit fidelity in the eight site case is much longer

than available coherence times

» For the two and four site cases, both strokes are achievable with ~40 us on
current hardware

Future Work

» Repeat the analysis using the transverse field Ising model as the base
Hamiltonian and adding disorder to Jj;, h;

» Compute the heat and extract the work done by the engine using the density
matrix and Hamiltonian expressions

» Discuss details of simulating the heat engine on superconducting qubits /
quantum annealers with experimental collaborators
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