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Classical vs. Quantum Heat Engines

Classical Otto Engine Cycle
(Internal Combustion)

[Quattroch, http://web.mit.edu/16.unified/www/
FALL/thermodynamics/notes/node26.html (2006) ]
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Classical Heat and Work

Q “

ż

CvdT

W “

ż

PdV

η “ 1 ´ r 1´γ

r “ V1{V2, γ “ Cv {Cp

Many Body Localization
(MBL) Engine Cycle

[Yunger Halpern et al., Phys.Rev.B 99, 024203 (2019) ]
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TABLE I. Parameters of the mesoscopic and macroscopic MBL engines (introduced in Secs. III and IV). Boltzmann’s and Planck’s
constants are set to one: kB = h̄ = 1.

Symbol Significance

N Number of sites per mesoscale engine (in Sec. III) or per mesoscale subengine
(in the macroscopic engine, in Sec. IV). Chosen, in the latter case, to equal ξ>.

N Dimensionality of one mesoscale (sub)engine’s Hilbert space.
E Unit of energy, average energy density per site.

Hamiltonian parameter tuned from 0 (in the mesoscale engine’s ETH regime,
αt or the macroscopic engine’s shallowly localized regime)

to 1 (in the engine’s deeply MBL regime).
〈δ〉 Average gap in the energy spectrum of a length-N MBL system.
Wb Bandwidth of the cold bath. Small: Wb � 〈δ〉.
βH = 1/TH Inverse temperature of the hot bath.
βC = 1/TC Inverse temperature of the cold bath.
δ− Level-repulsion scale of a length-N MBL system. Minimal size reasonably attributable to

any energy gap. Smallest gap size at which a Poissonian (1) approximates
the MBL gap distribution well.

v Speed at which the Hamiltonian is tuned: v := E dαt

t
.

Has dimensions of 1/time2, in accordance with part of [64].
ξ> Localization length of macroscopic MBL engine when shallowly localized.

Length of mesoscale subengine.
ξ< Localization length of macroscopic MBL engine when deeply localized. Satisfies ξ< < ξ>.
Xmacro Characteristic X of the macroscopic MBL engine (e.g., X = N, 〈δ〉).
g Strength of coupling between engine and cold bath.
τcycle Time required to implement one cycle.
〈δ〉(L) Average energy gap of a length-L MBL system.

A. Qubit toy model

At the MBL Otto engine’s core lies a qubit Otto engine
whose energy eigenbasis transforms during the cycle [60–63].
Consider a two-level system evolving under the time-varying
Hamiltonian

Hqubit (t ) := (1 − αt )hσx + αth
′σ z . (8)

σx and σ z denote the Pauli x and z operators. αt denotes a
parameter tuned between 0 and 1.

Figure 2 illustrates the cycle. The engine begins in thermal
equilibrium at a high temperature TH. During stroke 1, the
engine is thermally isolated, and αt is tuned from 0 to 1.
During stroke 2, the engine thermalizes to a temperature
TC � TH. During stroke 3, the engine is thermally isolated,
and αt returns from 1 to 0. During stroke 4, the engine resets
by thermalizing with the hot bath.

Let us make two simplifying assumptions (see Ref. [[49],
Appendix C] for a generalization): first, let TH = ∞ and TC =
0. Second, assume that the engine is tuned slowly enough to
satisfy the quantum adiabatic theorem. We also choose1

h = δGOE

2
, h′ = δMBL

2
,

and δGOE 	 δMBL.

1The gaps’ labels are suggestive; a qubit, having only one gap,
obeys neither GOE nor MBL gap statistics. However, when large,
the qubit gap apes a typical GOE gap; and, when small, the qubit gap
apes a useful MBL gap. This mimicry illustrates how the mesoscopic
engine benefits from the greater prevalence of small gaps in MBL
spectra than in GOE spectra.

Let us analyze the cycle’s energetics. The system
begins with 〈Hqubit (t )〉 = 0. Stroke 1 preserves the
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FIG. 2. Qubit toy model for the MBL Otto cycle. A qubit models
two “working levels” in the MBL Otto engine’s many-body spec-
trum. The energy eigenstates |E(1)

t 〉 and |E (2)
t 〉 span the “working

subspace.” The gap E
(2)
t − E

(1)
t begins at size δGOE during a success-

ful trial. The gap shrinks to δMBL, then returns to δGOE. In addition to
changing the gap, each Hamiltonian tuning changes the eigenstates’
functional forms. The displacement δdispl is included for generality.
The blue text marks the times t = 0, τ, . . . , τ ′′′ at which the strokes
begin and end during a work-outputting trial. The spectator level
|E (3)

t 〉 fails to impact the engine’s efficiency. The cold bath has too
narrow a bandwidth Wb to couple |E (3)

t 〉 to any other level. If the
engine begins any trial on the top green line, the engine remains on
that line throughout the trial. Zero net work is outputted.
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Quantum Heat and Work

Q “

ż τ

0
Tr ρ

dH

dt
dt

W “

ż τ

0
Tr

dρ

dt
H dt

η “ 1 ´ δMBL { δGOE

Near Ground State MBL Engine

§ Near ground state configuration
minimizes excursions to other states

§ Heating & cooling strokes maximize
and minimize energy exchange
between hot & cold baths

§ Same efficiency as MBL engine

η “ 1 ´ δETH { δMBL

§ Need to quantify adiabatic timescales
for τ3 Ñ τ and τ 1 Ñ τ 2

§ Computed spectra for MBL / ETH
phases exhibits a modest gap ratio,
bounding the efficiency by „ 0.84

§ Chosen maximum disorder strength
has not been tested in hardware
(could cause undesirable heating due
to large currents on the flux lines)
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Bose Hubbard Model

Superfluid Phase

J≫Uhi

Mott Insulator Phase
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Disordered Phase

J≪Uhi

Multilevel Hamiltonian

H “ ´J
ÿ

xijy

ˆ

a:i aj ` h.c.
˙

`

ÿ

i

`

hi ´ µ
˘

ni `
U

2

ÿ

i

ni
`

ni ` 1
˘

Perturbative Hamiltonian

H “ ´J
ÿ

xijy

pσ`i σ
´
j ` h.c.q

`

ÿ

i

`

hi ´ µ
˘

σzi `O
´

J { U2
¯

Hardware Mapping

Coupled Transmon Qubits
§ Implements Bose Hubbard Model
§ Defaults to Mott Insulator (J ! U)
§ External flux tuning can access the

disordered phase, control hiptq
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[Ma et al., Nature 566, 51 (2019) ]

Simulation of Adiabatic Strokes

§ Generate disorder realizations thiu

hji P rhmin, hmaxs

§ Exact diagonalization of ETH and
disordered (DIS) Hamiltonians

HETH |ψ
ETH
n y “ E ETH

n |ψETH
n y

HDIS |ψ
DIS
n y “ EDIS

n |ψDIS
n y

§ Adiabatic evolution from eigenstates
of HETH Ø HDIS

iBt |ψptqy “ Hptq |ψptqy

Hptq “ HETH ` HMBLC ptq

C ptq “

#

Aptq, DIS Ñ ETH
Bptq, ETH Ñ DIS

§ Compute fidelity F and residual
energy Eres averaged over disorders

Eres “
ˇ

ˇEtarget ´ xHtargety
ˇ

ˇ

F “
ˇ

ˇxψtarget|ψptqy
ˇ

ˇ

2

Disorder Realizations
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Annealing Schedules
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Results

Model Parameters

J{2π “ 10 MHz, U{2π “ 250 MHz, h P
“

´10J , 10J
‰
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Residual Energy Density, 2.0-48.0 s
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Residual Energy Density, 2.0-48.0 s
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§ Results confirm that the ground state to ground state transition (compression
stroke) reaches a higher fidelity in a shorter time compared to the first excited
to first excited state transition (expansion stroke)

§ Residual energy density offers a spatiotemporal metric for evaluating the scaling
of both strokes’ performance with system size and evolution time

§ The required time to reach unit fidelity in the eight site case is much longer
than available coherence times

§ For the two and four site cases, both strokes are achievable with „40 µs on
current hardware

Future Work

§ Repeat the analysis using the transverse field Ising model as the base
Hamiltonian and adding disorder to Jij , hi

§ Compute the heat and extract the work done by the engine using the density
matrix and Hamiltonian expressions

§ Discuss details of simulating the heat engine on superconducting qubits /
quantum annealers with experimental collaborators
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