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ABSTRACT

Superconducting qubits are among the leading physical qubit candidates, with coherence times

exceeding 100 microseconds and gate times on the order of tens of nanoseconds. At the hardware level,

tunable coupling between qubits has enabled fast, high fidelity two qubit gates, the limiting factor for

quantum algorithm gate depth. Tunable couplers have played a significant role in scaling these systems and

were instrumental in the first quantum advantage demonstration in certifiable random number generation.

Parametric operations, such as beam splitter and two-mode squeezing, are activated by oscillating fields

applied to a tunable coupler that are resonant with these red and blue sidebands, respectively. Theoretical

modeling tools exist for planar geometries and 3D geometries that use capacitive coupling, but ones for

galvanic coupling in 3D have not been realized.

This thesis will discuss the design of two novel tunable couplers, one in the planar domain and another

in 3D that uses galvanic coupling. In the planar design, a III-V semiconductor heterostructure acts as a

tunable capacitor when biased with a negative gate voltage, parting the sea of electrons to modify the

geometry of the capacitor. The 3D tunable coupler uses a dc superconducting quantum interference device

shunting a 3D cavity and driven at the sum or difference frequencies of cavities to induce beam splitter or

two-mode squeezing operations. I will discuss this 3D galvanic coupler and the analysis method developed

to estimate beam splitter, two-mode squeezing, and single-mode squeezing rates.

The novel materials comprising the 2DEG coupler spurred experiments to estimate its dielectric losses.

These experiments led to the design of cavity-based loss metrology systems, with applications in a variety

of materials of interest to the superconducting qubit field, namely bulk dielectric loss in indium phosphide,

silicon, and sapphire substrates. I will discuss these cavity loss experiments and 2D resonator loss

measurements focused on understanding loss mechanisms in 2D qubits. The materials in the 2D studies

include niobium and its oxides and hydrides, tantalum, titanium nitride, and silicon. These studies

highlight the importance of designing targeted A/B experiments and collecting sufficient loss statistics with

tens of resonators per device variation.
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CHAPTER 1

INTRODUCTION

Quantum computing, sensing, simulation, and communication promise to deliver solutions in materials

design [29], remote sensing [30], quantum chemistry [31, 32], secure information transfer [33, 34], and

myriad other settings inaccessible to conventional resources and classical computing. Recent investment in

this space has enabled several noisy intermediate scale quantum (NISQ) devices [35] consisting of 20-100

noisy superconducting circuits, trapped ions, and neutral atom gate-based and analog computing

platforms, not to mention several thousand lower coherence ux qubits available from D-Wave Systems.

Superconducting qubits, developed with tools borrowed from the semiconductor industry, are among the

leading physical qubits, with coherence times exceeding 100� s and gate times on the order of tens of

ns [36]. Several industry leaders and national laboratories support and provide cloud access to

superconducting circuit and ion trap NISQ devices, with teams devoted to hardware, �rmware, software,

and customer service. At the hardware level, coupling between qubits has enabled fast, high coherence two

qubit gates, along with single qubits required to implement a universal gate set (in analog and quantum

annealing systems, couplings between qubits limits the the size and scope of problems one can study with

those systems). Tunable couplers have played a signi�cant role in scaling these systems and were

instrumental in the �rst demonstration of quantum advantage in certi�able random number generation [37].

Superconducting quantum interference devices (SQUIDs) consisting of a superconducting loop

interrupted by one or more Josephson junctions, where a local or global magnetic �eld threads the SQUID

loop, act as e�ective tunable inductors in conventional, ux-tunable couplers [38]. In planar devices, this

has been the defacto tunable coupler, allowing fast multi-qubit operations at the expense of ux noise and

challenges in minimizing heat dissipation from applied currents [8, 39]. Often these couplers change the

e�ective capacitance between neighboring qubits, rather than the mutual inductance between qubits.1 One

might ask, is there a more direct means of changing the capacitance between qubits without ux bias? We

propose voltage or charge control, �rst explored in Cooper pair box (CPB) charge qubits [40] to address

this question. CPBs were quickly replaced by ux tuning, as the transmon qubit with its large shunt

capacitor e�ectively eliminating its sensitive to o�set charge noise [1, 41]. This pivot from o�set charge

dispersion to ux tunability and charge insensitive energies postponed the pursuit of voltage-tunable

couplers until the arrival of gatemon qubits with voltage-controlled Josephson junctions [42].

1See Section 1.4.1 for a systematic organization of coupling types in 2D superconducting qubits.
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Superconductor-semiconductor-superconductor (S-Sm-S) junctions, the generalization of

superconductor-insulator-superconductor (SIS) and superconductor-normal-superconductor (SNS)

junctions used in superconducting qubits and programmable voltage standards [43], respectively, are

voltage-controlled with a single gate or array of gate electrodes. The number of mobile charges in the

semiconductor underneath the gate (s) changes as a function of the strength and sign of the applied voltage

(s). Early interest in Josephson �eld e�ect transistors, JOFETs or JJFETs, used in classical digital logic

circuits realized such gate-tunable devices in high mobility materials such as GaAs [44] and InGaAs [45].

Unsurprisingly, these materials have garnered attention in the tunable coupler space, with tunable

couplings to resonator buses [23, 46, 47], mediated by two-dimensional electron gas (2DEG) based, voltage

controlled Josephson junctions.

Our proposed 2DEG coupler changes the e�ective capacitance seen between neighboring qubits by

applying negative voltages to a near surface gate, thereby depleting the 2DEG of electrons, increasing the

gap between the conducting regions of the semiconductor, and decreasing the capacitance as a function of

the gap size. We emphasize the novelty of this design in Chapter 2, where we quantify the on/o� ratio of

the coupler (ratio between maximum and minimum capacitance) and extract charge-charge interaction

matrix elements relevant to superconducting qubit operations. This work has been condensed into a patent

application US Patent App. No. 63/132,831, submitted in late 2020 and recently published in [48],

reproduced in Chapter 2. To estimate the losses that a tunable coupler with a large dielectric footprint

might add to a conventional superconducting qubit device, we designed an experiment to investigate the

losses in the III-V semiconductor materials and other substrates in Chapter 7.

3D cavities pose a di�erent set of challenges when designing and implementing tunable coupling between

them. Their high coherence, with single photon lifetimes exceeding one second in Tesla accelerator-inspired

niobium cavities [49] and coaxial high purity aluminum cavity lifetimes on order of 10 ms [50], has been

partially limited by the coherence of the transmons used to control them. Typically transmon qubits,

either �xed frequency or ux-tunable, supply the requisite nonlinearity to address and manipulate cavity

states for storage or computation, or the higher levels of the transmon are used asd-level qudits [51, 52].

The placement of dielectrics in regions of high electric �elds leads to additional losses, limiting the lifetime

of the composite qubit-cavity system. In an electric �eld-dipole interaction between a transmon and cavity

mode, there are also always-on, static capacitive interactions that require precision cancellation with dc or

ac microwave drives. [53] Designing a tunable coupler that is engineered to not have these always-on

parasitic couplings with minimal dielectric loss and a high on/o� ratio is an active area of research.
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In Chapter 4, we propose a galvanic tunable coupler to address the coherence limitations, avoid stray

capacitive interactions, increase cavity tunability, and by extension increase the rate of parametrically

activated, bilinear interactions. A patent application was submitted for this design, and the associated �eld

integral overlap method discussed in Chapter 3, in early February 2023 based on the work in this thesis.

1.1 Digital and Analog Quantum Computing

This chapter will review the theory of quantum computation, assuming the reader has some previous

exposure to quantum mechanics, classical computing, and linear algebra. Contrasting thisdigital

framework of quantum computing with one form of analog computing, continuous variable (CV) quantum

computing, where the work in Chapters 3 and 4 aim to make an impact in the sub�eld of CV quantum

computing using superconducting cavity modes.2

1.1.1 Digital Quantum Computing

To de�ne digital quantum computing, certain aspects of classical computing come to mind, namely

digital logical and the fundamental unit of classical information, the bit. A classical bit can represent one

of two states, either a logical 0 or logical 1. These states are identi�ed ashigh (1) or low (0) analog

voltages on transistors. By mapping all voltages less than some threshold to 0 and those above to 1, the

underlying analog device approximates a digital system. The number of states thatN -bits can represent is

N . Hardware (redundant bits) and software (electronic error correction) components ensure that the state

of each bit persists and uctuations in environmental conditions do not modify the state of the bits or do

so at a tolerable rate that does not disrupt general computational tasks [55].

Logical operations performed on classical bits include AND, OR, NOT, and combinations of these

operations to realize a universal logic, capable or representing any function.3 These operations orgates

have deterministic truth tables, as in Table 1.1 de�ning their operations on any single bit or pair of bits.

Table 1.1 Truth tables for classical logical gates

a b a AND b a OR b NOT a NOT b
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 1
1 1 1 1 0 0

2There are also exciting developments in quantum annealing in the coherent limit performed with the D-Wave machine [54].
Quantum annealing is outside of the scope of this thesis, but it is worth mentioning it as another form of analog quantum
computing, along with CV and special-purpose quantum simulators.

3A universal gate set consisting of NAND (not AND) gates alone can implement all possible classical logical operations.
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Quantum bits or qubits, in analogy to their classical counterparts, reference logical 0 and 1 states,

denoted in the computational basis asj0i and j1i , with the Dirac-notation ket jni and bra hnj used as a

shorthand for the column and row vectors

j0i =
�

1
0

�
; j1i =

�
0
1

�
; (1.1)

h0j = (1 ; 0) ; h1j = (0 ; 1) : (1.2)

Physically, qubits are electronic states in trapped ions, persistent clockwise and counterclockwise

currents in superconducting loops, the presence or absence of microwave photons in a superconducting

circuit, as in the transmon qubit [1] energy level diagram in Figure 1.1(b), and many others. Unlike

classical bits, the state of a qubit can be a linear superposition of both logical states with complex

coe�cients � and � as j i = � j0i + � j1i .

(a) Bloch sphere (b) Qubit energy levels

Figure 1.1 (a) Bloch sphere representing an arbitrary single qubit state. (b) Energy levels of a
superconducting transmon qubit [1].

The coe�cients � and � are the probability amplitudes and the probabilities are the square of these

amplitudes, de�ned in terms of their complex conjugates denoted by the raised asterisk (f�g � ), e.g.

p0 = � � � = j� j2 and p1 = � � � = j� j2 with the constraint j� j2 + j� j2 = 1 that the total probability is equal

to unity. A useful geometric interpretation of a single qubit state is the Bloch sphere (see Figure 1.1(a)),

where the qubit state is represented by a point on the surface of the sphere with azimuthal angle� and

polar angle � , j i = cos(�=2) j0i + ei� sin(�=2) j1i where i =
p

� 1 is the imaginary unit and j0i ; j1i are the

north and south poles of the Bloch sphere.
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As with classical computing, quantum computing uses single (uninary) and two qubit (binary) logical

gates. These gates act on the state of a single qubit or two qubits, realizing universal computation with the

single qubit rotations, controlled NOT (CNOT), SWAP, and Hadamard gates. Logical circuits composed of

sequences of single and two qubit gates perform quantum algorithms of varying complexity. One can

construct unitary operators, represented as matrices in the computational basis, analogous to the truth

tables describing the classical gates.

For example, the CNOT gate or controlled NOT gate, acts on two qubits described by the two

component state vectorjcti = jci 
 j ci , with c the control and t the target qubit. The action of CNOT on

two qubits is to ip the state of the target qubit when the control bit is j1i , otherwise leave the target

qubit state unchanged. In Table 1.2, we give the truth table for a CNOT gate, with the unitary UNOT

given by the permutation matrix in the computational basis

UNOT =

0

B
B
@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

C
C
A (1.3)

Table 1.2 Truth table of a CNOT quantum logic gate

jcti UCNOT jcti
j00i j 00i
j01i j 01i
j10i j 11i
j11i j 10i

The gate depth, denoted by the number of gates in a single quantum circuit, is one measure of the

circuit complexity, along with the number of two qubit gates in the circuit. Current NISQ superconducting

qubit systems are limited by the error rate of two qubit gates. Reducing the time and error rate of two

qubit gates is of great import to achieving fault tolerant quantum computing with superconducting qubits

and other modalities.

1.1.2 Continuous Variable Quantum Computing

As alluded to above,digital is a misnomer in the NISQ era of quantum computing, where all quantum

simulators, annealers, and gate-based quantum computers are still fundamentally analog machines. Calling

out a separate heading on analog quantum computing is also necessary to later highlight the role of tunable

couplers in CV quantum computing.
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The path towards error-corrected, fault-tolerant digital quantum computing has become clearer as

planar superconducting circuits recently demonstrated an improvement in error rates by increasing the

number of qubits in their surface code scheme [56]. Although this result con�rms the theoretical behavior

of surface error correction codes [57] at small code distances, the 3D superconducting cavity community

has made larger strides with a continuous variables approach.

A continuous variable (CV) quantum system can be used to encode discrete quantum states in a system

with continuous quantum degrees of freedom, e.g. the positions and momenta of many modes in a

harmonic oscillator [58]. The theoretical proposal for this scheme was presented by Gottesman, Kitaev,

and Preskill (GKP) in 2001 [59] and has only been recently realized, to varying degrees, in trapped

ions [60] and superconducting 3D cavity circuit QED systems [61, 62]. The GKP code corrects small shifts

in the generalized position and momentum of single or multiple modes of an oscillator, and is now a leading

error correction candidate to reach fault tolerant quantum computing. Superconducting 3D cavity

implementations of GKP state generation and gate operations owe their successes in part to previous

e�orts to access and control the harmonic oscillator Hilbert space in those cavities [51, 63, 64]. This is part

of the motivation behind engineering cavity-nonlinear element couplings, discussed in Chapters 3 and 4,

that preserve the base coherence of the cavities, as their bosonic states are tailored to these codes and have

relatively long lifetimes compared to individual planar superconducting qubits.

1.2 Superconducting Circuits and Circuit QED

Superconducting circuits, the building blocks of superconducting qubits, have applications that also

include astrophysical detectors [65, 66], magnetometry [67], and metrology as in de�ning the voltage

standard. Figure 1.2 chronicles some of the key theoretical milestones and Figure 1.4 summarizes the major

demonstrations of superconducting circuit theory, starting with the discovery of superconductivity in

mercury [68] and extending to recent signi�cant quantum computing milestones achieved by planar

superconducting qubits.

The basic superconducting circuit elements include microwave coplanar waveguide (CPW) structures,

lumped element inductors and capacitors, Josephson junctions (JJs) [69], and quantum phase slip junctions

(QPSs) [70], each requiring a number of fabrication techniques including photolithography, shadow

evaporative deposition, and molecular beam epitaxy (MBE). This section will discuss the classical circuit

theory and quantum mechanics used to synthesize and analyze networks of these circuit elements. We

review these procedures that arrive at the Hamiltonians encountered in superconducting circuit-based

quantum computing. These techniques also underlie the design of tunable couplers discussed in

Chapter 1.4 with speci�c implementations in Chapters 2 and 4.
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Figure 1.2 Summary of theoretical milestones in superconductivity and superconducting circuits.

1.2.1 Classical Circuit Theory and Canonical Quantization

Superconducting circuit design often starts from a lumped element circuit model to realize a desired

Hamiltonian. Circuit quantum electrodynamics (circuit QED or cQED) o�ers a systematic approach to

convert those classical lumped element linear and nonlinear circuit networks into classical Lagrangians in

terms of node uxes � j and their time derivatives _� j [71, 72]

L (f � j g; f _� j g) =
X

j

�
1
2

Cj
_� 2
j �

1
2

L � 1
j � 2

j

�
(1.4)

where Cj and L j are linear capacitors and inductors in the network. Generalizations of this Lagrangian are

ubiquitous in cQED and provide a language to express various interactions between neighboring circuit

elements in terms of charges and uxes. We identify the generalized conjugate momenta as the node

chargesqj de�ned by the classical Lagrangian expressions

qj =
@L

@_� j
= Cj

_� j (1.5)

and the classical Hamiltonian follows from the Legendre transformation

H =
X

j

�
qj

_� j � L
�

=
X

j

�
1
2

C � 1
j q2

j +
1
2

L � 1
j � 2

j

�
(1.6)
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This Hamiltonian is analogous to a collection of uncoupled harmonic oscillators expressed in terms of

generalized positionsf � j g and momenta f qj g. The canonical quantization approach in this context assigns

a single harmonic oscillator mode to eachLC pair or node ux / charge pair [73].

To quantize the circuit, the node charge and ux variables are promoted to operators with

commutation relations given by

h
�̂ j ; q̂k

i
= �̂ j q̂k � q̂k �̂ j = i �h � jk (1.7)

(1.8)

where � jk = 1 ; j = k; � jk = 0 ; j 6= k is the Kronecker delta.4 These operators can then be expressed as

linear combinations of bosonic creation and annihilation operatorsâj ; ây
j , whose commutation relations

h
âj ; ây

k

i
= � jk follow from (1.7)

qj ! q̂j = � iqZPF
j

�
âj � ây

j

�
; � j ! �̂ j = � ZPF

j

�
âj + ây

j

�
(1.9)

The resonance frequency associated with thej th bosonic mode is! j = ( L j Cj ) � 1=2, Z j = ( L j C � 1
j )1=2 is the

mode impedance, and� ZPF
j , qZPF

j are the zero point uctuations of the mode, de�ned by

qZPF
j =

s
�h

2Z j
=

r
�h! j Cj

2
=

s
�h

2! j L j
(1.10)

� ZPF
j =

r
�hZ j

2
=

r
�h! j L j

2
=

s
�h

2! j Cj
(1.11)

Physically, these uctuations are related to the vacuum expectation values of the square of the charge and

ux operators or the variances as

h�̂ 2
j i = h0j j �̂ 2

j j0j i

=
�
� ZPF

j

� 2
h0j j (â2

j + ay 2
j + ay

j a + aj ay
j ) j0j i =

�
� ZPF

j

� 2
(1.12)

ĥq2
j i = h0j j q̂2

j j0j i =
�
qZPF

j

� 2
(1.13)

Note, we have written all of the possible expressions for zero point uctuations and will choose each

de�nition throughout this thesis depending on its suitability to the problem at hand. For most applications,

choosing the �rst or second de�nitions in (1.10) and (1.11) is the natural choice, unless one is interested in

expressing couplings in terms of mode impedances, then the �rst pair of de�nitions is preferred.

4Note, the classical Hamiltonian in (1.6) is of a symplectic form, i.e. the Poisson bracket f � j ; qk g = � jk )
h
�̂ j ; q̂k

i
= i �h � jk .

In Ref. [74], the authors present a more general prescription to arrive at a Hamiltonian of this form that guarantees the � j

and qk are canonically conjugate variables and thus �̂ j and q̂k are canonically conjugate operators.
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Each expression is equivalent and the �rst is the most compact, but some authors will choose one form

over another to compare capacitance with mass and inductance with an inverse spring constant in

mechanical oscillators.

The bosonic operator description for the linear elements in a given superconducting circuit lends itself

to analogies with cavity QED (CQED), i.e. atoms in cavities and interactions of the Jaynes-Cummings [75]

type, where Josephson junctions act as arti�cial atoms andLC 's act as cavity modes [41, 76].

1.2.2 Josephson Junctions

The nonlinear elements alluded to in the previous section are Josephson junctions and quantum phase

slip junctions. For the purposes of this thesis, we will omit QPSs and focus on Josephson junctions. These

junctions are typically superconducting-insulator-superconductor (SIS) or superconductor-normal

metal-superconductor (SNS) structures. The lumped element model of SIS junctions was �rst described

by Josephson [69] in 1962, with the behavior of such a device depending on the phase di�erence

' = ' 2 � ' 1 of the wavefunctions of the two superconducting leads. Figure 1.3 shows a conceptual model of

these wavefunctions plotted on a cross-section of an overlap SIS Josephson junction.

Figure 1.3 Cross-section of an overlap SIS Josephson junction.

Two consequences of the overlapping macroscopic quantum wavefunctions of the two superconducting

leads of the Josephson junction are the dc and ac Josephson e�ects relating' to the supercurrent I s
5

owing across the junction and the voltage across the junctionVJ

I s = I c sin ' (1.14)

� 0

2�
d ' (t)

d t
= VJ (t) (1.15)

5This is related to the supercurrent density Js described in more detail in Section 1.5.5 by the junction area.
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In (1.15), � 0 = h=2e is the magnetic ux quantum, and (1.15) has the correct sign resulting from the

derivation outlined in [67] rather than the minus sign in Faraday's law of a similar form due to the

relationship between the phases of superconducting leads.

The dc Josephson e�ect in (1.14) describes the nonlinear behavior of the junction current, which can be

treated as a nonlinear inductor with inductance L J [77]

VJ =
1

I c cos'
� 0

2�
d I s

d t
= L J

d I s

d t
(1.16)

L J =
� 0

2�
1

I c cos'
=

L J 0

cos'
(1.17)

The ac Josephson e�ect in (1.15) is a statement of ux-voltage transformation, useful in the development of

the superconducting Josephson junction-based voltage standard at NIST [78] and to circuit quantization

involving external voltage sources.

Figure 1.4 Summary of experimental milestones in superconductivity and superconducting circuits.
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1.2.3 Circuit QED, Cooper Pair Boxes, and Transmons

With the addition of Josephson junctions to the circuit quantization toolbox, superconducting circuits

could realize (in the appropriate parameter regimes) physics from cavity QED. Unlike naturally occurring

atomic systems, arti�cial atoms and cavities in superconducting circuits can be designed to have much

stronger couplings and and richer energy spectra depending on the choice of circuit topologies and values.

This is both a feature and a concern, as no two superconducting qubits can be fabricated to have exactly

the same energy spectra, although recent work at IBM has improved the precision of their qubit

frequencies using a laser annealing process to adjust the junction inductance of their qubits, leading to an

imprecision of 0.15 % in frequency [79]. This is still a relatively large uncertainty on the qubit frequency;

for a 5 GHz qubit, this amounts to an uncertainty of 7.5 MHz, much larger than the linewidth � of a

transmon with a 100 � s T1 time and corresponding�= 2� = 1 :6 kHz.

Figure 1.5 Dispersive readout. Left: Magnitude of cavity transmission. Right: Phase of cavity
transmission. Ground state (blue), excited state (red), bare cavity (gray) with qubit-cavity detuning < 0.
Adapted from [2], see Appendix E.

1.2.4 Circuit QED

As mentioned above, circuit QED or cQED is the circuit analog to CQED. The prototype Hamiltonian

in the cavity (CQED) case is that of the Jaynes-Cummings model [75] which consists of a two level atom

with a dipole coupling to the electric �eld operator Ê (single mode with frequency! c and bosonic

operators â; ây) of a cavity [80]

Ĥ JC =
1
2

�h! a �̂ z + �h! c
�
âyâ + 1=2

�
� �̂�� e � Ê

=
�h! a �̂ z

2
+ �h! c

�
âyâ + 1=2

�
� i �hg

�
â�̂ + � ây �̂ � � �̂ + ây + �̂ � â

�

�
�h! a �̂ z

2
+ �h! c

�
âyâ + 1=2

�
� i �hg

�
â�̂ + � ây �̂ �

�
(1.18)

11



The �rst term in (1.18) gives the energy of a single atom with ground to excited state transition

frequency ! a and electric dipole moment operator�̂�� e. The second term gives the energy of a single mode of

the cavity with resonance frequency! c and the third term gives the dipole coupling between the electric

�eld of the cavity and atom. Between the second and third lines in (1.18), we discarded the terms that do

not conserve photon number, ^� + ây + �̂ � â by applying the rotating wave approximation (RWA).

The RWA follows from rewriting the Schr•odinger-picture Hamiltonian in (1.18) in the interaction

picture and discarding terms with phase factorse� i ( ! c + ! a ) t , as these terms oscillate rapidly relative to the

terms with e� i ( ! c � ! a ) t and their time averages go to zero, provided that the atom-cavity detuning satis�es

� ac = j! c � ! a j � j ! c + ! a j. In the �eld integral overlap method reported in Chapter 3, both photon

number conserving and non-conserving terms will be retained and can be activated by applying external

�elds at the sum or di�erence frequencies. The dispersive limit, g � � ac , permits a unitary transformation

of this Hamiltonian known as the Schrie�er-Wolf transformation that highlights two important features of

cQED systems: dispersive readout and photon number-state dependent qubit dephasing [41, 81]. Ignoring

the vacuum energy term in (1.18), we have, to orderg2=� ac

Ĥdisp �
1
2

�h! 0
a � z + �h! câyâ + �h� ac âyâ�̂ z (1.19)

where ! 0
a = ! a + � ac , � ac = g2=� ac , and the last two terms are often grouped together as �h(! c + � ac �̂ z )âyâ

to illustrate the qubit state-dependent shift of the cavity frequency as shown in Figure 1.5. Similarly, the

qubit state can shift with a change in the number of photons in the cavity by grouping the �rst and last

terms �h(! 0
a + � ac âyâ)�̂ z . This latter grouping has applications in quantum sensing, where single photons

are counted by measuring shifts in the qubit frequency or by measuring the photon number parity [82].

1.2.5 Cooper Pair Box and Transmons

To realize a Hamiltonian such as (1.18) or (1.19) with superconducting circuits, one starts from the

classical descriptions in Section 1.2.1 with an additional energy term for the Josephson junctions of the

form (� EJ cos' ) [41]

HCPB = EC (n � ng)2 � EJ cos' (1.20)

where n is the number of Cooper pairs on the superconducting island forming the so-called Cooper pair

box qubit [40], ng is the o�set charge on the island, and' is the gauge-invariant superconducting phase

di�erence across the Josephson junction.
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The quantized version of (1.20) in the Cooper-pair number basis reads [83]

ĤCPB = EC (n̂ � ng)2 �
1
2

EJ

X

n 2 Z

(jni hn + 1 j + jn + 1 i hnj) (1.21)

with its energies depending on the o�set chargeng. The transmon qubit operates in the charge-insensitive

limit, where EJ =EC � 1 and the energy levels no longer strongly depend on the o�set charge

ng [1, 41]. Figure 1.6 illustrates this o�set charge dependence, with the �gures produced using the open

source Python packagescqubits [84, 85].

Figure 1.6 Cooper pair box energies as a function of o�set charge. (a) Charge qubit regime, (b) typical
transmon regime. Energies scaled to

p
8EJ EC and shifted from the their minima such that the ground

state energy at zero charge o�set is zero. Adapted from [1], see permissions in Appendix E.

This insensitivity to o�set charge uctuations leads to a suppression of charge noise dephasing, that is

proportional to @E01=@�= h0j @̂HCPB =@�j0i � h 1j @̂HCPB =@�j1i , with � = ng, i.e. [1]

T2;1=f charge �
�h
A

�
�
�
�
@E01

@ng

�
�
�
�

� 1

(1.22)

where A � 10� 4e is a typical charge uctuation amplitude from experiments at the time of writing in

Ref. [1]. There is a tradeo� to achieve this exponential suppression in charge dispersion, that is an

algebraic reduction in the anharmonicity, the departure of the level spacings from equally-spaced, harmonic

oscillator-like levels. In practical transmon implementations, an EJ =EC ratio of 50 is achieved with an

EJ = 15 GHz and EC = 300 MHz. This anharmonicity is su�ciently large to individually address the 0-1

transition, and often the 1-2 transition, as it is much larger than the qubit linewidth and easily realized

with micron sized shunt capacitor pads.
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The large shunt capacitor in the transmon di�erentiates it from the Cooper pair box qubit, resulting in

a large EJ =EC ratio with a large capacitance (EC = e2=2E � , C� is the total capacitance of the Josephson

junction and shunt capacitor).

1.3 Circuit QED with 3D Cavities

In Section 1.2, we saw that given a circuit network, one can write down the Lagrangian and

Hamiltonian to arrive at a quantum description for the circuit. For some 3D structures such as individual

modes of rectangular cavities, it is possible to write down an approximate equivalent circuit model.

However, general microwave structures, either planar or 3D, require other methods to convert the

frequency response of the linear circuit to an equivalent circuit that can then be quantized by the methods

described in the Section 1.2 or other approaches described below.

Prior to the writing of this thesis, the two primary approaches to quantizing 3D structures were the

blackbox approach and associated Brune synthesis and quantization methods, and the energy participation

ratio (EPR) method. In Chapter 3, we will introduce the �eld overlap integral method that generalizes a

subset of the EPR approach to enable the analysis of 3D structures with galvanic shunts such as the

tunable coupler described in Chapter 4.

1.3.1 Black-Box Quantization Methods

Figure 1.7 Lossy Foster series RLC decomposition of a single port network shunted by one Josephson
junction with gauge invariant phase di�erence ' , reproduced with permission from [3].

The starting points for all driven modal, black-box circuit quantization approaches are semi-automated

circuit extraction methods that approximate the multiport impedance Z or admittance Y as a series of LC

circuits or other more general cascaded, passive linear networks. The LC ladder network normal mode

expansion of the structure is based on Foster's reactance theorem [86]. This theorem states that any

passive, linear, and purely reactive network can be expressed as a series combination of parallel LC sections

or a parallel combination of series LC sections. The addition of resistors approximates the losses in the

system, but the lossy Foster form cannot exactly reproduce the impedance of the underlying network.
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Otto Brune developed a single port synthesis method that exactly represents the impedance of any

linear passive network satisfying the positive-real conditions, i.e. that the impedance function must have

positive, real values for all complex frequenciess with Ref sg > 0 [87]. This is a statement of passivity

itself, that resistances must be non-negative and energy is conserved. The multiport version of this circuit

synthesis method followed from the work of Anderson and Moylan [88], where state space methods

improved the numerical and algorithmic implementation of the synthesis procedure. Solgun quantized the

single port Brune circuit [90] and generalized the procedure to the multiport Brune circuit from the state

space description of the circuit by Anderson and Moylan [88] in his PhD thesis [89].

The latter procedure, purported to be a general method to circuit synthesis and quantization of 2D and

3D structures, is extremely sensitive to passivity violations in the parametrized impedance matrices

computed by Vector Fitting algorithms [91, 92] and the development of postprocessing techniques to

correct those violations is an active area of research. These methods fall under the larger class of black-box

impedance quantization methods, but the details of Vector Fitting and Brune synthesis are outside of the

scope of this thesis.

1.3.2 Summary of Black-Box Quantization with the Lossy Foster Decomposition

The black-box quantization method, in the lossy Foster approximation, treats cavity modes and

Josephson junctions separately. The lossy Foster approach treats the electromagnetic �elds of the passive,

linear elements in the system as a collection of damped harmonic oscillators or cascaded RLC sections, as

in Figure 1.7. In the absence of loss (modes with in�nite quality factor), Foster's reactance theorem maps

the poles and residues of the impedance matrix or zeros and derivatives of the imaginary part of the

admittance matrix to LC sections corresponding to the resonant frequencies of a passive, linearN -port

network [86].

Foster's reactance theorem, together with circuit QED, considers anN -port network whose terminals

are shunted by N -Josephson junctions. The driving point [93] admittances (the diagonal entries of the

admittance matrix calculated by Ansys HFSS or a similar full-wave electromagnetic �nite element solver)

captures the linear, classical response of the circuit, with the nonlinearity of thek-th junction added to the

k-th driving point admittance, \by hand" 6,7

Ykk (! ) ! Ykk (! ) + i!C J;k +
1

i!L J;k
+

1
RJ;k

(1.23)

6When we say \by hand", we mean that the Josephson junction inductance and its nonlinearity are added to the admittance
function Ykk (! ) extracted from HFSS as a post-processing step. Some practioners prefer to include the linear part of the
inductance as a lumped element boundary condition across the port where Ykk (! ) is calculated. All calculations performed
and referenced in this thesis use the \by hand" approach.

7We use i instead of j for the imaginary unit to agree with the notation used throughout this thesis.
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Figure 1.8 Black-box resonance frequencies from (a) zero crossings of the imaginary part of the admittance
and (b) lumped port de�ned by a rectangle representing a Josephson junction.

In (1.23) Ykk (! ) is the driving point admittance, the response of the system at portk driven by a

driving voltage Vk resulting in an output current I k , with all other ports short circuited,

Ykk (! ) = I k =Vk jVj 6= k =0 . CJ;k is k-th junction capacitance, and L � 1
J;k is the k-th junction inductance. The

resistor RJ;k is an optional parameter to estimate the coherence limit of the entire structure by including

losses from experiments. For example, one can assume that the junction acts as a transmon with a

Purcell-limited T1 [94] set by

T1;Purcell =
CJ

Ref YJJ (! )g
) RJ;k =

CJ

T1;Purcell
(1.24)

In practice, HFSS calculates the driving point impedancesZkk with a lumped port de�ned by a

rectangular sheet at the location of thek-th Josephson and the direction of the driving current I k speci�ed

by the user (typically oriented along the longest dimension of the rectangular sheet, centered along the

shortest dimension) generating an output voltageVk . The driving point admittances are computed by

inverting the driving point impedances,8 Ykk = Z � 1
kk [93].

In the single port picture, we have one driving point admittance, Y11 = Y(! ), with resonance

frequencies! p located at the zero crossings of Imf Ykk (! )g (see Figure 1.8) and mode inductancesL p,

capacitancesCp, and impedancesZp de�ned by [95]

Cp =
1
2

dImf Y (! )g
d!

�
�
�
�
! = ! p

; L p =
1

! 2
pCp

; Zp =

s
L p

Cp
(1.25)

8Note this does not apply to the transfer impedances and transfer admittances, i.e. the o�-diagonal entries of the corresponding
matrices, where Ymn 6= Z � 1

mn ; m 6= n.
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Imf�g gives the imaginary part of a complex valued function. All passive networks have resonances

where dImf Y (! )g=d! > 0, as shown in the inset of Figure 1.8a, resulting in positive capacitances in (1.25).

The Hamiltonian associated with the combination of mode inductors and capacitors is given by [41]

H0 =
X

p

 
Q2

p

2Cp
+

� 2
p

2L p

!

=
X

p

�
4EC;p N 2

p +
1
2

EL;p ' 2
p

�
(1.26)

Np =
Qp

2e
; ' p =

�
2�
� 0

�
� p (1.27)

EL;p =
�

� 0

2�

� 2 1
L p

; EC;p =
e2

2Cp
(1.28)

where Qp is the charge operator,Np is the Cooper pair number operator, � p is the ux operator, ' p is the

2� -periodic phase operator, �0 = h=2e is the magnetic ux quantum, 2e is the electronic charge of a

Cooper pair, EL;p is the inductive energy, andEC;p is the charge energy, each referenced to a normal mode

with index p. The Hamiltonian in Eq. (1.26) is equivalent to a harmonic oscillator Hamiltonian

Ĥ0 =
X

p

�h! p
�
ây

pap + 1=2
�

(1.29)

where ! p = ( L pCp) � 1=2 and
�
âp; ây

q

�
= � pq. For a detailed derivation of the quantization of this

Hamiltonian and the relationship between the black-box zero point uctuations and the energy

participation ratios described in Section 1.3.4, see Appendix B.

To accurately compute the above quantities, the admittances are calculated with full-wave

electromagnetic �nite element simulations. These simulations are performed as frequency sweeps, where

the excitation (input voltage) frequency is swept densely near each resonance and sparsely away from

resonance. Typically, Ansys High Frequency Structure Simulation (HFSS) acts as the �nite element solver

with a driven modal solution type as the frequency sweep driver. These frequency sweeps increase the

runtime of the simulation, limiting the speed with which geometric parameter sweeps can be performed to

optimize a given device design. The frequency re�nement is a user-controlled process, leading to signi�cant

variability between resonance frequency identi�cation from user-to-user. There are other limitations of this

analysis, including the modeling of loss. In the next section, we discuss some of these pitfalls and heuristics

to remove unphysical simulation artifacts from quantities derived from black-box calculations. In

Section 1.3.4, the energy participation ratio approach addresses both the frequency sweep and loss

problems by solving a simpler eigenvalue problem.
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