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ABSTRACT

Superconducting qubits are among the leading physical qubit candidates, with coherence times

exceeding 100 microseconds and gate times on the order of tens of nanoseconds. At the hardware level,

tunable coupling between qubits has enabled fast, high fidelity two qubit gates, the limiting factor for

quantum algorithm gate depth. Tunable couplers have played a significant role in scaling these systems and

were instrumental in the first quantum advantage demonstration in certifiable random number generation.

Parametric operations, such as beam splitter and two-mode squeezing, are activated by oscillating fields

applied to a tunable coupler that are resonant with these red and blue sidebands, respectively. Theoretical

modeling tools exist for planar geometries and 3D geometries that use capacitive coupling, but ones for

galvanic coupling in 3D have not been realized.

This thesis will discuss the design of two novel tunable couplers, one in the planar domain and another

in 3D that uses galvanic coupling. In the planar design, a III-V semiconductor heterostructure acts as a

tunable capacitor when biased with a negative gate voltage, parting the sea of electrons to modify the

geometry of the capacitor. The 3D tunable coupler uses a dc superconducting quantum interference device

shunting a 3D cavity and driven at the sum or difference frequencies of cavities to induce beam splitter or

two-mode squeezing operations. I will discuss this 3D galvanic coupler and the analysis method developed

to estimate beam splitter, two-mode squeezing, and single-mode squeezing rates.

The novel materials comprising the 2DEG coupler spurred experiments to estimate its dielectric losses.

These experiments led to the design of cavity-based loss metrology systems, with applications in a variety

of materials of interest to the superconducting qubit field, namely bulk dielectric loss in indium phosphide,

silicon, and sapphire substrates. I will discuss these cavity loss experiments and 2D resonator loss

measurements focused on understanding loss mechanisms in 2D qubits. The materials in the 2D studies

include niobium and its oxides and hydrides, tantalum, titanium nitride, and silicon. These studies

highlight the importance of designing targeted A/B experiments and collecting sufficient loss statistics with

tens of resonators per device variation.
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(†)
k

Bosonic annihilation (creation) operator of mode k evaluated at a dc control parameter . . . . . . . . ã
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CHAPTER 1

INTRODUCTION

Quantum computing, sensing, simulation, and communication promise to deliver solutions in materials

design [29], remote sensing [30], quantum chemistry [31, 32], secure information transfer [33, 34], and

myriad other settings inaccessible to conventional resources and classical computing. Recent investment in

this space has enabled several noisy intermediate scale quantum (NISQ) devices [35] consisting of 20-100

noisy superconducting circuits, trapped ions, and neutral atom gate-based and analog computing

platforms, not to mention several thousand lower coherence flux qubits available from D-Wave Systems.

Superconducting qubits, developed with tools borrowed from the semiconductor industry, are among the

leading physical qubits, with coherence times exceeding 100 µs and gate times on the order of tens of

ns [36]. Several industry leaders and national laboratories support and provide cloud access to

superconducting circuit and ion trap NISQ devices, with teams devoted to hardware, firmware, software,

and customer service. At the hardware level, coupling between qubits has enabled fast, high coherence two

qubit gates, along with single qubits required to implement a universal gate set (in analog and quantum

annealing systems, couplings between qubits limits the the size and scope of problems one can study with

those systems). Tunable couplers have played a significant role in scaling these systems and were

instrumental in the first demonstration of quantum advantage in certifiable random number generation [37].

Superconducting quantum interference devices (SQUIDs) consisting of a superconducting loop

interrupted by one or more Josephson junctions, where a local or global magnetic field threads the SQUID

loop, act as effective tunable inductors in conventional, flux-tunable couplers [38]. In planar devices, this

has been the defacto tunable coupler, allowing fast multi-qubit operations at the expense of flux noise and

challenges in minimizing heat dissipation from applied currents [8, 39]. Often these couplers change the

effective capacitance between neighboring qubits, rather than the mutual inductance between qubits.1 One

might ask, is there a more direct means of changing the capacitance between qubits without flux bias? We

propose voltage or charge control, first explored in Cooper pair box (CPB) charge qubits [40] to address

this question. CPBs were quickly replaced by flux tuning, as the transmon qubit with its large shunt

capacitor effectively eliminating its sensitive to offset charge noise [1, 41]. This pivot from offset charge

dispersion to flux tunability and charge insensitive energies postponed the pursuit of voltage-tunable

couplers until the arrival of gatemon qubits with voltage-controlled Josephson junctions [42].

1See Section 1.4.1 for a systematic organization of coupling types in 2D superconducting qubits.
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Superconductor-semiconductor-superconductor (S-Sm-S) junctions, the generalization of

superconductor-insulator-superconductor (SIS) and superconductor-normal-superconductor (SNS)

junctions used in superconducting qubits and programmable voltage standards [43], respectively, are

voltage-controlled with a single gate or array of gate electrodes. The number of mobile charges in the

semiconductor underneath the gate (s) changes as a function of the strength and sign of the applied voltage

(s). Early interest in Josephson field effect transistors, JOFETs or JJFETs, used in classical digital logic

circuits realized such gate-tunable devices in high mobility materials such as GaAs [44] and InGaAs [45].

Unsurprisingly, these materials have garnered attention in the tunable coupler space, with tunable

couplings to resonator buses [23, 46, 47], mediated by two-dimensional electron gas (2DEG) based, voltage

controlled Josephson junctions.

Our proposed 2DEG coupler changes the effective capacitance seen between neighboring qubits by

applying negative voltages to a near surface gate, thereby depleting the 2DEG of electrons, increasing the

gap between the conducting regions of the semiconductor, and decreasing the capacitance as a function of

the gap size. We emphasize the novelty of this design in Chapter 2, where we quantify the on/off ratio of

the coupler (ratio between maximum and minimum capacitance) and extract charge-charge interaction

matrix elements relevant to superconducting qubit operations. This work has been condensed into a patent

application US Patent App. No. 63/132,831, submitted in late 2020 and recently published in [48],

reproduced in Chapter 2. To estimate the losses that a tunable coupler with a large dielectric footprint

might add to a conventional superconducting qubit device, we designed an experiment to investigate the

losses in the III-V semiconductor materials and other substrates in Chapter 7.

3D cavities pose a different set of challenges when designing and implementing tunable coupling between

them. Their high coherence, with single photon lifetimes exceeding one second in Tesla accelerator-inspired

niobium cavities [49] and coaxial high purity aluminum cavity lifetimes on order of 10 ms [50], has been

partially limited by the coherence of the transmons used to control them. Typically transmon qubits,

either fixed frequency or flux-tunable, supply the requisite nonlinearity to address and manipulate cavity

states for storage or computation, or the higher levels of the transmon are used as d-level qudits [51, 52].

The placement of dielectrics in regions of high electric fields leads to additional losses, limiting the lifetime

of the composite qubit-cavity system. In an electric field-dipole interaction between a transmon and cavity

mode, there are also always-on, static capacitive interactions that require precision cancellation with dc or

ac microwave drives. [53] Designing a tunable coupler that is engineered to not have these always-on

parasitic couplings with minimal dielectric loss and a high on/off ratio is an active area of research.
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In Chapter 4, we propose a galvanic tunable coupler to address the coherence limitations, avoid stray

capacitive interactions, increase cavity tunability, and by extension increase the rate of parametrically

activated, bilinear interactions. A patent application was submitted for this design, and the associated field

integral overlap method discussed in Chapter 3, in early February 2023 based on the work in this thesis.

1.1 Digital and Analog Quantum Computing

This chapter will review the theory of quantum computation, assuming the reader has some previous

exposure to quantum mechanics, classical computing, and linear algebra. Contrasting this digital

framework of quantum computing with one form of analog computing, continuous variable (CV) quantum

computing, where the work in Chapters 3 and 4 aim to make an impact in the subfield of CV quantum

computing using superconducting cavity modes.2

1.1.1 Digital Quantum Computing

To define digital quantum computing, certain aspects of classical computing come to mind, namely

digital logical and the fundamental unit of classical information, the bit. A classical bit can represent one

of two states, either a logical 0 or logical 1. These states are identified as high (1) or low (0) analog

voltages on transistors. By mapping all voltages less than some threshold to 0 and those above to 1, the

underlying analog device approximates a digital system. The number of states that N -bits can represent is

N . Hardware (redundant bits) and software (electronic error correction) components ensure that the state

of each bit persists and fluctuations in environmental conditions do not modify the state of the bits or do

so at a tolerable rate that does not disrupt general computational tasks [55].

Logical operations performed on classical bits include AND, OR, NOT, and combinations of these

operations to realize a universal logic, capable or representing any function.3 These operations or gates

have deterministic truth tables, as in Table 1.1 defining their operations on any single bit or pair of bits.

Table 1.1 Truth tables for classical logical gates

a b a AND b a OR b NOT a NOT b
0 0 0 0 1 1
0 1 0 1 1 0
1 0 0 1 0 1
1 1 1 1 0 0

2There are also exciting developments in quantum annealing in the coherent limit performed with the D-Wave machine [54].
Quantum annealing is outside of the scope of this thesis, but it is worth mentioning it as another form of analog quantum
computing, along with CV and special-purpose quantum simulators.

3A universal gate set consisting of NAND (not AND) gates alone can implement all possible classical logical operations.
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Quantum bits or qubits, in analogy to their classical counterparts, reference logical 0 and 1 states,

denoted in the computational basis as |0〉 and |1〉, with the Dirac-notation ket |n〉 and bra 〈n| used as a

shorthand for the column and row vectors

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, (1.1)

〈0| = (1 , 0) , 〈1| = (0 , 1) . (1.2)

Physically, qubits are electronic states in trapped ions, persistent clockwise and counterclockwise

currents in superconducting loops, the presence or absence of microwave photons in a superconducting

circuit, as in the transmon qubit [1] energy level diagram in Figure 1.1(b), and many others. Unlike

classical bits, the state of a qubit can be a linear superposition of both logical states with complex

coefficients α and β as |ψ〉 = α |0〉+ β |1〉.

|1⟩	(-|z⟩)
|x⟩

|y⟩

|0⟩	(+|z⟩)

𝜙

𝜃
 |𝜓⟩

(a) Bloch sphere

|0⟩	

|1⟩	

|2⟩	

ℏ𝜔01

ℏ𝜔01(1-𝛼)

Two Level Qubit
(b) Qubit energy levels

Figure 1.1 (a) Bloch sphere representing an arbitrary single qubit state. (b) Energy levels of a
superconducting transmon qubit [1].

The coefficients α and β are the probability amplitudes and the probabilities are the square of these

amplitudes, defined in terms of their complex conjugates denoted by the raised asterisk ({·}∗), e.g.

p0 = α∗α = |α|2 and p1 = β∗β = |β|2 with the constraint |α|2 + |β|2 = 1 that the total probability is equal

to unity. A useful geometric interpretation of a single qubit state is the Bloch sphere (see Figure 1.1(a)),

where the qubit state is represented by a point on the surface of the sphere with azimuthal angle φ and

polar angle θ, |ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 where i =
√
−1 is the imaginary unit and |0〉 , |1〉 are the

north and south poles of the Bloch sphere.
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As with classical computing, quantum computing uses single (uninary) and two qubit (binary) logical

gates. These gates act on the state of a single qubit or two qubits, realizing universal computation with the

single qubit rotations, controlled NOT (CNOT), SWAP, and Hadamard gates. Logical circuits composed of

sequences of single and two qubit gates perform quantum algorithms of varying complexity. One can

construct unitary operators, represented as matrices in the computational basis, analogous to the truth

tables describing the classical gates.

For example, the CNOT gate or controlled NOT gate, acts on two qubits described by the two

component state vector |ct〉 = |c〉 ⊗ |c〉, with c the control and t the target qubit. The action of CNOT on

two qubits is to flip the state of the target qubit when the control bit is |1〉, otherwise leave the target

qubit state unchanged. In Table 1.2, we give the truth table for a CNOT gate, with the unitary UNOT

given by the permutation matrix in the computational basis

UNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.3)

Table 1.2 Truth table of a CNOT quantum logic gate

|ct〉 UCNOT |ct〉
|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

The gate depth, denoted by the number of gates in a single quantum circuit, is one measure of the

circuit complexity, along with the number of two qubit gates in the circuit. Current NISQ superconducting

qubit systems are limited by the error rate of two qubit gates. Reducing the time and error rate of two

qubit gates is of great import to achieving fault tolerant quantum computing with superconducting qubits

and other modalities.

1.1.2 Continuous Variable Quantum Computing

As alluded to above, digital is a misnomer in the NISQ era of quantum computing, where all quantum

simulators, annealers, and gate-based quantum computers are still fundamentally analog machines. Calling

out a separate heading on analog quantum computing is also necessary to later highlight the role of tunable

couplers in CV quantum computing.
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The path towards error-corrected, fault-tolerant digital quantum computing has become clearer as

planar superconducting circuits recently demonstrated an improvement in error rates by increasing the

number of qubits in their surface code scheme [56]. Although this result confirms the theoretical behavior

of surface error correction codes [57] at small code distances, the 3D superconducting cavity community

has made larger strides with a continuous variables approach.

A continuous variable (CV) quantum system can be used to encode discrete quantum states in a system

with continuous quantum degrees of freedom, e.g. the positions and momenta of many modes in a

harmonic oscillator [58]. The theoretical proposal for this scheme was presented by Gottesman, Kitaev,

and Preskill (GKP) in 2001 [59] and has only been recently realized, to varying degrees, in trapped

ions [60] and superconducting 3D cavity circuit QED systems [61, 62]. The GKP code corrects small shifts

in the generalized position and momentum of single or multiple modes of an oscillator, and is now a leading

error correction candidate to reach fault tolerant quantum computing. Superconducting 3D cavity

implementations of GKP state generation and gate operations owe their successes in part to previous

efforts to access and control the harmonic oscillator Hilbert space in those cavities [51, 63, 64]. This is part

of the motivation behind engineering cavity-nonlinear element couplings, discussed in Chapters 3 and 4,

that preserve the base coherence of the cavities, as their bosonic states are tailored to these codes and have

relatively long lifetimes compared to individual planar superconducting qubits.

1.2 Superconducting Circuits and Circuit QED

Superconducting circuits, the building blocks of superconducting qubits, have applications that also

include astrophysical detectors [65, 66], magnetometry [67], and metrology as in defining the voltage

standard. Figure 1.2 chronicles some of the key theoretical milestones and Figure 1.4 summarizes the major

demonstrations of superconducting circuit theory, starting with the discovery of superconductivity in

mercury [68] and extending to recent significant quantum computing milestones achieved by planar

superconducting qubits.

The basic superconducting circuit elements include microwave coplanar waveguide (CPW) structures,

lumped element inductors and capacitors, Josephson junctions (JJs) [69], and quantum phase slip junctions

(QPSs) [70], each requiring a number of fabrication techniques including photolithography, shadow

evaporative deposition, and molecular beam epitaxy (MBE). This section will discuss the classical circuit

theory and quantum mechanics used to synthesize and analyze networks of these circuit elements. We

review these procedures that arrive at the Hamiltonians encountered in superconducting circuit-based

quantum computing. These techniques also underlie the design of tunable couplers discussed in

Chapter 1.4 with specific implementations in Chapters 2 and 4.
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IQM KQCircuits
https://github.com/iqm-finland/KQCircuits

Figure 1.2 Summary of theoretical milestones in superconductivity and superconducting circuits.

1.2.1 Classical Circuit Theory and Canonical Quantization

Superconducting circuit design often starts from a lumped element circuit model to realize a desired

Hamiltonian. Circuit quantum electrodynamics (circuit QED or cQED) offers a systematic approach to

convert those classical lumped element linear and nonlinear circuit networks into classical Lagrangians in

terms of node fluxes φj and their time derivatives φ̇j [71, 72]

L({φj}, {φ̇j}) =
∑
j

(
1

2
Cj φ̇

2
j −

1

2
L−1
j φ2

j

)
(1.4)

where Cj and Lj are linear capacitors and inductors in the network. Generalizations of this Lagrangian are

ubiquitous in cQED and provide a language to express various interactions between neighboring circuit

elements in terms of charges and fluxes. We identify the generalized conjugate momenta as the node

charges qj defined by the classical Lagrangian expressions

qj =
∂L
∂φ̇j

= Cj φ̇j (1.5)

and the classical Hamiltonian follows from the Legendre transformation

H =
∑
j

(
qj φ̇j − L

)
=
∑
j

(
1

2
C−1
j q2

j +
1

2
L−1
j φ2

j

)
(1.6)
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This Hamiltonian is analogous to a collection of uncoupled harmonic oscillators expressed in terms of

generalized positions {φj} and momenta {qj}. The canonical quantization approach in this context assigns

a single harmonic oscillator mode to each LC pair or node flux / charge pair [73].

To quantize the circuit, the node charge and flux variables are promoted to operators with

commutation relations given by

[
φ̂j , q̂k

]
= φ̂j q̂k − q̂k φ̂j = ih̄ δjk (1.7)

(1.8)

where δjk = 1, j = k, δjk = 0, j 6= k is the Kronecker delta.4 These operators can then be expressed as

linear combinations of bosonic creation and annihilation operators âj , â
†
j , whose commutation relations[

âj , â
†
k

]
= δjk follow from (1.7)

qj → q̂j = −iqZPF
j

(
âj − â†j

)
, φj → φ̂j = φZPF

j

(
âj + â†j

)
(1.9)

The resonance frequency associated with the jth bosonic mode is ωj = (LjCj)
−1/2, Zj = (LjC

−1
j )1/2 is the

mode impedance, and φZPF
j , qZPF

j are the zero point fluctuations of the mode, defined by

qZPF
j =

√
h̄

2Zj
=

√
h̄ωjCj

2
=

√
h̄

2ωjLj
(1.10)

φZPF
j =

√
h̄Zj

2
=

√
h̄ωjLj

2
=

√
h̄

2ωjCj
(1.11)

Physically, these fluctuations are related to the vacuum expectation values of the square of the charge and

flux operators or the variances as

〈φ̂2
j 〉 = 〈0j | φ̂2

j |0j〉

=
(
φZPF
j

)2 〈0j | (â2
j + a† 2

j + a†ja+ aja
†
j) |0j〉 =

(
φZPF
j

)2
(1.12)

〈q̂2
j 〉 = 〈0j | q̂2

j |0j〉 =
(
qZPF
j

)2
(1.13)

Note, we have written all of the possible expressions for zero point fluctuations and will choose each

definition throughout this thesis depending on its suitability to the problem at hand. For most applications,

choosing the first or second definitions in (1.10) and (1.11) is the natural choice, unless one is interested in

expressing couplings in terms of mode impedances, then the first pair of definitions is preferred.

4Note, the classical Hamiltonian in (1.6) is of a symplectic form, i.e. the Poisson bracket {φj , qk} = δjk ⇒
[
φ̂j , q̂k

]
= ih̄ δjk.

In Ref. [74], the authors present a more general prescription to arrive at a Hamiltonian of this form that guarantees the φj
and qk are canonically conjugate variables and thus φ̂j and q̂k are canonically conjugate operators.
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Each expression is equivalent and the first is the most compact, but some authors will choose one form

over another to compare capacitance with mass and inductance with an inverse spring constant in

mechanical oscillators.

The bosonic operator description for the linear elements in a given superconducting circuit lends itself

to analogies with cavity QED (CQED), i.e. atoms in cavities and interactions of the Jaynes-Cummings [75]

type, where Josephson junctions act as artificial atoms and LC’s act as cavity modes [41, 76].

1.2.2 Josephson Junctions

The nonlinear elements alluded to in the previous section are Josephson junctions and quantum phase

slip junctions. For the purposes of this thesis, we will omit QPSs and focus on Josephson junctions. These

junctions are typically superconducting-insulator-superconductor (SIS) or superconductor-normal

metal-superconductor (SNS) structures. The lumped element model of SIS junctions was first described

by Josephson [69] in 1962, with the behavior of such a device depending on the phase difference

ϕ = ϕ2 −ϕ1 of the wavefunctions of the two superconducting leads. Figure 1.3 shows a conceptual model of

these wavefunctions plotted on a cross-section of an overlap SIS Josephson junction.

Superconductors Insulator

𝜓1(𝜑1) 𝜓2(𝜑2)

Figure 1.3 Cross-section of an overlap SIS Josephson junction.

Two consequences of the overlapping macroscopic quantum wavefunctions of the two superconducting

leads of the Josephson junction are the dc and ac Josephson effects relating ϕ to the supercurrent Is
5

flowing across the junction and the voltage across the junction VJ

Is = Ic sinϕ (1.14)

Φ0

2π

dϕ(t)

d t
= VJ(t) (1.15)

5This is related to the supercurrent density Js described in more detail in Section 1.5.5 by the junction area.
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In (1.15), Φ0 = h/2e is the magnetic flux quantum, and (1.15) has the correct sign resulting from the

derivation outlined in [67] rather than the minus sign in Faraday’s law of a similar form due to the

relationship between the phases of superconducting leads.

The dc Josephson effect in (1.14) describes the nonlinear behavior of the junction current, which can be

treated as a nonlinear inductor with inductance LJ [77]

VJ =
1

Ic cosϕ

Φ0

2π

d Is
d t

= LJ
d Is
d t

(1.16)

LJ =
Φ0

2π

1

Ic cosϕ
=

LJ0

cosϕ
(1.17)

The ac Josephson effect in (1.15) is a statement of flux-voltage transformation, useful in the development of

the superconducting Josephson junction-based voltage standard at NIST [78] and to circuit quantization

involving external voltage sources.

Figure 1.4 Summary of experimental milestones in superconductivity and superconducting circuits.
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1.2.3 Circuit QED, Cooper Pair Boxes, and Transmons

With the addition of Josephson junctions to the circuit quantization toolbox, superconducting circuits

could realize (in the appropriate parameter regimes) physics from cavity QED. Unlike naturally occurring

atomic systems, artificial atoms and cavities in superconducting circuits can be designed to have much

stronger couplings and and richer energy spectra depending on the choice of circuit topologies and values.

This is both a feature and a concern, as no two superconducting qubits can be fabricated to have exactly

the same energy spectra, although recent work at IBM has improved the precision of their qubit

frequencies using a laser annealing process to adjust the junction inductance of their qubits, leading to an

imprecision of 0.15 % in frequency [79]. This is still a relatively large uncertainty on the qubit frequency;

for a 5 GHz qubit, this amounts to an uncertainty of 7.5 MHz, much larger than the linewidth κ of a

transmon with a 100 µs T1 time and corresponding κ/2π = 1.6 kHz.

Figure 1.5 Dispersive readout. Left: Magnitude of cavity transmission. Right: Phase of cavity
transmission. Ground state (blue), excited state (red), bare cavity (gray) with qubit-cavity detuning < 0.
Adapted from [2], see Appendix E.

1.2.4 Circuit QED

As mentioned above, circuit QED or cQED is the circuit analog to CQED. The prototype Hamiltonian

in the cavity (CQED) case is that of the Jaynes-Cummings model [75] which consists of a two level atom

with a dipole coupling to the electric field operator Ê (single mode with frequency ωc and bosonic

operators â, â†) of a cavity [80]

ĤJC =
1

2
h̄ωaσ̂z + h̄ωc

(
â†â+ 1/2

)
− µ̂µµe · Ê

=
h̄ωaσ̂z

2
+ h̄ωc

(
â†â+ 1/2

)
− ih̄g

(
âσ̂+ − â†σ̂− − σ̂+â

† + σ̂−â
)

≈ h̄ωaσ̂z
2

+ h̄ωc
(
â†â+ 1/2

)
− ih̄g

(
âσ̂+ − â†σ̂−

)
(1.18)
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The first term in (1.18) gives the energy of a single atom with ground to excited state transition

frequency ωa and electric dipole moment operator µ̂µµe. The second term gives the energy of a single mode of

the cavity with resonance frequency ωc and the third term gives the dipole coupling between the electric

field of the cavity and atom. Between the second and third lines in (1.18), we discarded the terms that do

not conserve photon number, σ̂+â
† + σ̂−â by applying the rotating wave approximation (RWA).

The RWA follows from rewriting the Schrödinger-picture Hamiltonian in (1.18) in the interaction

picture and discarding terms with phase factors e± i(ωc+ωa)t, as these terms oscillate rapidly relative to the

terms with e± i(ωc−ωa)t and their time averages go to zero, provided that the atom-cavity detuning satisfies

∆ac = |ωc − ωa| � |ωc + ωa|. In the field integral overlap method reported in Chapter 3, both photon

number conserving and non-conserving terms will be retained and can be activated by applying external

fields at the sum or difference frequencies. The dispersive limit, g � ∆ac, permits a unitary transformation

of this Hamiltonian known as the Schrieffer-Wolf transformation that highlights two important features of

cQED systems: dispersive readout and photon number-state dependent qubit dephasing [41, 81]. Ignoring

the vacuum energy term in (1.18), we have, to order g2/∆ac

Ĥdisp ≈
1

2
h̄ω′aσz + h̄ωcâ

†â+ h̄χacâ
†âσ̂z (1.19)

where ω′a = ωa +χac, χac = g2/∆ac, and the last two terms are often grouped together as h̄(ωc +χacσ̂z)â
†â

to illustrate the qubit state-dependent shift of the cavity frequency as shown in Figure 1.5. Similarly, the

qubit state can shift with a change in the number of photons in the cavity by grouping the first and last

terms h̄(ω′a + χacâ
†â)σ̂z. This latter grouping has applications in quantum sensing, where single photons

are counted by measuring shifts in the qubit frequency or by measuring the photon number parity [82].

1.2.5 Cooper Pair Box and Transmons

To realize a Hamiltonian such as (1.18) or (1.19) with superconducting circuits, one starts from the

classical descriptions in Section 1.2.1 with an additional energy term for the Josephson junctions of the

form (−EJ cosϕ) [41]

HCPB = EC(n− ng)2 − EJ cosϕ (1.20)

where n is the number of Cooper pairs on the superconducting island forming the so-called Cooper pair

box qubit [40], ng is the offset charge on the island, and ϕ is the gauge-invariant superconducting phase

difference across the Josephson junction.

12



The quantized version of (1.20) in the Cooper-pair number basis reads [83]

ĤCPB = EC(n̂− ng)2 − 1

2
EJ
∑
n∈Z

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) (1.21)

with its energies depending on the offset charge ng. The transmon qubit operates in the charge-insensitive

limit, where EJ/EC � 1 and the energy levels no longer strongly depend on the offset charge

ng [1, 41]. Figure 1.6 illustrates this offset charge dependence, with the figures produced using the open

source Python package scqubits [84, 85].

EJ / EC = 1

(a) (b)

EJ / EC = 50

Figure 1.6 Cooper pair box energies as a function of offset charge. (a) Charge qubit regime, (b) typical
transmon regime. Energies scaled to

√
8EJEC and shifted from the their minima such that the ground

state energy at zero charge offset is zero. Adapted from [1], see permissions in Appendix E.

This insensitivity to offset charge fluctuations leads to a suppression of charge noise dephasing, that is

proportional to ∂E01/∂λ = 〈0| ∂ĤCPB/∂λ |0〉 − 〈1| ∂ĤCPB/∂λ |1〉, with λ = ng, i.e. [1]

T2,1/f charge ∼
h̄

A

∣∣∣∣∂E01

∂ng

∣∣∣∣−1

(1.22)

where A ∼ 10−4e is a typical charge fluctuation amplitude from experiments at the time of writing in

Ref. [1]. There is a tradeoff to achieve this exponential suppression in charge dispersion, that is an

algebraic reduction in the anharmonicity, the departure of the level spacings from equally-spaced, harmonic

oscillator-like levels. In practical transmon implementations, an EJ/EC ratio of 50 is achieved with an

EJ = 15 GHz and EC = 300 MHz. This anharmonicity is sufficiently large to individually address the 0-1

transition, and often the 1-2 transition, as it is much larger than the qubit linewidth and easily realized

with micron sized shunt capacitor pads.
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The large shunt capacitor in the transmon differentiates it from the Cooper pair box qubit, resulting in

a large EJ/EC ratio with a large capacitance (EC = e2/2EΣ, CΣ is the total capacitance of the Josephson

junction and shunt capacitor).

1.3 Circuit QED with 3D Cavities

In Section 1.2, we saw that given a circuit network, one can write down the Lagrangian and

Hamiltonian to arrive at a quantum description for the circuit. For some 3D structures such as individual

modes of rectangular cavities, it is possible to write down an approximate equivalent circuit model.

However, general microwave structures, either planar or 3D, require other methods to convert the

frequency response of the linear circuit to an equivalent circuit that can then be quantized by the methods

described in the Section 1.2 or other approaches described below.

Prior to the writing of this thesis, the two primary approaches to quantizing 3D structures were the

blackbox approach and associated Brune synthesis and quantization methods, and the energy participation

ratio (EPR) method. In Chapter 3, we will introduce the field overlap integral method that generalizes a

subset of the EPR approach to enable the analysis of 3D structures with galvanic shunts such as the

tunable coupler described in Chapter 4.

1.3.1 Black-Box Quantization Methods

Figure 1.7 Lossy Foster series RLC decomposition of a single port network shunted by one Josephson
junction with gauge invariant phase difference ϕ, reproduced with permission from [3].

The starting points for all driven modal, black-box circuit quantization approaches are semi-automated

circuit extraction methods that approximate the multiport impedance Z or admittance Y as a series of LC

circuits or other more general cascaded, passive linear networks. The LC ladder network normal mode

expansion of the structure is based on Foster’s reactance theorem [86]. This theorem states that any

passive, linear, and purely reactive network can be expressed as a series combination of parallel LC sections

or a parallel combination of series LC sections. The addition of resistors approximates the losses in the

system, but the lossy Foster form cannot exactly reproduce the impedance of the underlying network.

14



Otto Brune developed a single port synthesis method that exactly represents the impedance of any

linear passive network satisfying the positive-real conditions, i.e. that the impedance function must have

positive, real values for all complex frequencies s with Re{s} > 0 [87]. This is a statement of passivity

itself, that resistances must be non-negative and energy is conserved. The multiport version of this circuit

synthesis method followed from the work of Anderson and Moylan [88], where state space methods

improved the numerical and algorithmic implementation of the synthesis procedure. Solgun quantized the

single port Brune circuit [90] and generalized the procedure to the multiport Brune circuit from the state

space description of the circuit by Anderson and Moylan [88] in his PhD thesis [89].

The latter procedure, purported to be a general method to circuit synthesis and quantization of 2D and

3D structures, is extremely sensitive to passivity violations in the parametrized impedance matrices

computed by Vector Fitting algorithms [91, 92] and the development of postprocessing techniques to

correct those violations is an active area of research. These methods fall under the larger class of black-box

impedance quantization methods, but the details of Vector Fitting and Brune synthesis are outside of the

scope of this thesis.

1.3.2 Summary of Black-Box Quantization with the Lossy Foster Decomposition

The black-box quantization method, in the lossy Foster approximation, treats cavity modes and

Josephson junctions separately. The lossy Foster approach treats the electromagnetic fields of the passive,

linear elements in the system as a collection of damped harmonic oscillators or cascaded RLC sections, as

in Figure 1.7. In the absence of loss (modes with infinite quality factor), Foster’s reactance theorem maps

the poles and residues of the impedance matrix or zeros and derivatives of the imaginary part of the

admittance matrix to LC sections corresponding to the resonant frequencies of a passive, linear N -port

network [86].

Foster’s reactance theorem, together with circuit QED, considers an N -port network whose terminals

are shunted by N -Josephson junctions. The driving point [93] admittances (the diagonal entries of the

admittance matrix calculated by Ansys HFSS or a similar full-wave electromagnetic finite element solver)

captures the linear, classical response of the circuit, with the nonlinearity of the k-th junction added to the

k-th driving point admittance, “by hand”6,7

Ykk(ω)→ Ykk(ω) + iωCJ,k +
1

iωLJ,k
+

1

RJ,k
(1.23)

6When we say “by hand”, we mean that the Josephson junction inductance and its nonlinearity are added to the admittance
function Ykk(ω) extracted from HFSS as a post-processing step. Some practioners prefer to include the linear part of the
inductance as a lumped element boundary condition across the port where Ykk(ω) is calculated. All calculations performed
and referenced in this thesis use the “by hand” approach.

7We use i instead of j for the imaginary unit to agree with the notation used throughout this thesis.
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(a) (b)

Im Y'(ω) > 0

Figure 1.8 Black-box resonance frequencies from (a) zero crossings of the imaginary part of the admittance
and (b) lumped port defined by a rectangle representing a Josephson junction.

In (1.23) Ykk(ω) is the driving point admittance, the response of the system at port k driven by a

driving voltage Vk resulting in an output current Ik, with all other ports short circuited,

Ykk(ω) = Ik/Vk|Vj 6=k=0. CJ,k is k-th junction capacitance, and L−1
J,k is the k-th junction inductance. The

resistor RJ,k is an optional parameter to estimate the coherence limit of the entire structure by including

losses from experiments. For example, one can assume that the junction acts as a transmon with a

Purcell-limited T1 [94] set by

T1,Purcell =
CJ

Re{YJJ(ω)}
⇒ RJ,k =

CJ
T1,Purcell

(1.24)

In practice, HFSS calculates the driving point impedances Zkk with a lumped port defined by a

rectangular sheet at the location of the k-th Josephson and the direction of the driving current Ik specified

by the user (typically oriented along the longest dimension of the rectangular sheet, centered along the

shortest dimension) generating an output voltage Vk. The driving point admittances are computed by

inverting the driving point impedances,8 Ykk = Z−1
kk [93].

In the single port picture, we have one driving point admittance, Y11 = Y (ω), with resonance

frequencies ωp located at the zero crossings of Im{Ykk(ω)} (see Figure 1.8) and mode inductances Lp,

capacitances Cp, and impedances Zp defined by [95]

Cp =
1

2

dIm{Y (ω)}
dω

∣∣∣∣
ω=ωp

, Lp =
1

ω2
pCp

, Zp =

√
Lp
Cp

(1.25)

8Note this does not apply to the transfer impedances and transfer admittances, i.e. the off-diagonal entries of the corresponding
matrices, where Ymn 6= Z−1

mn,m 6= n.
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Im{·} gives the imaginary part of a complex valued function. All passive networks have resonances

where dIm{Y (ω)}/dω > 0, as shown in the inset of Figure 1.8a, resulting in positive capacitances in (1.25).

The Hamiltonian associated with the combination of mode inductors and capacitors is given by [41]

H0 =
∑
p

(
Q2
p

2Cp
+

Φ2
p

2Lp

)

=
∑
p

(
4EC,pN

2
p +

1

2
EL,pϕ

2
p

)
(1.26)

Np =
Qp
2e
, ϕp =

(
2π

Φ0

)
Φp (1.27)

EL,p =

(
Φ0

2π

)2
1

Lp
, EC,p =

e2

2Cp
(1.28)

where Qp is the charge operator, Np is the Cooper pair number operator, Φp is the flux operator, ϕp is the

2π-periodic phase operator, Φ0 = h/2e is the magnetic flux quantum, 2e is the electronic charge of a

Cooper pair, EL,p is the inductive energy, and EC,p is the charge energy, each referenced to a normal mode

with index p. The Hamiltonian in Eq. (1.26) is equivalent to a harmonic oscillator Hamiltonian

Ĥ0 =
∑
p

h̄ωp
(
â†pap + 1/2

)
(1.29)

where ωp = (LpCp)
−1/2

and
[
âp, â

†
q

]
= δpq. For a detailed derivation of the quantization of this

Hamiltonian and the relationship between the black-box zero point fluctuations and the energy

participation ratios described in Section 1.3.4, see Appendix B.

To accurately compute the above quantities, the admittances are calculated with full-wave

electromagnetic finite element simulations. These simulations are performed as frequency sweeps, where

the excitation (input voltage) frequency is swept densely near each resonance and sparsely away from

resonance. Typically, Ansys High Frequency Structure Simulation (HFSS) acts as the finite element solver

with a driven modal solution type as the frequency sweep driver. These frequency sweeps increase the

runtime of the simulation, limiting the speed with which geometric parameter sweeps can be performed to

optimize a given device design. The frequency refinement is a user-controlled process, leading to significant

variability between resonance frequency identification from user-to-user. There are other limitations of this

analysis, including the modeling of loss. In the next section, we discuss some of these pitfalls and heuristics

to remove unphysical simulation artifacts from quantities derived from black-box calculations. In

Section 1.3.4, the energy participation ratio approach addresses both the frequency sweep and loss

problems by solving a simpler eigenvalue problem.
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1.3.3 Numerical Idiosyncrasies with Black-Box Quantization

The black-box quantization methods have subtle numerical problems that can lead to nonphysical

results. These concerns are compounded by other theoretical concerns in how to properly handle the

truncation of the infinite modal expansion to a finite set of modes, the discussion of which can be found in

Chapter 2.5 of Nicholas Frattini’s thesis [96].

One of the challenges in both impedance and admittance based black-box quantization methods is the

enforcement of passivity. HFSS guarantees the resulting S-parameters derived from a driven modal

simulation are passive to some threshold. One expression of passivity is that the scattering matrix S must

be unitary, i.e. its singular values must be no greater than one, or equivalently, the norm of S ≤ 1 [97].

Small violations of the passivity constraint can occur with varying severity over a broad frequency range,

with the largest violations often observed near resonances. These violations can halt the Brune synthesis

procedure [87, 88], an alternative circuit synthesis method with exact reproduction of the original

impedance matrix, which was rigorously explored and quantized in the work by Solgun [89]. There is an

entire subfield in the electrical engineering community [98, 99] devoted to addressing this problem in the

context of Vector Fitting [91, 92] and model order reduction. Few groups use the Brune synthesis approach

for the reasons mentioned above, but the traditional black-box or lossy Foster method is not immune to

these passivity violations.

(a) (b)

Figure 1.9 Consequences of passivity violations in traditional black-box quantization. (a) The real part of
the admittance from a representative superconducting 3D structure showing negative resistance values in
gray. Raw data are shifted in blue and smoothed in red to correct for negative resistances. (b) The
imaginary part of the admittance shows the resonance frequency locations as the zero crossings of
Im {Y (ω)}.
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The consequences of these passivity violations in the traditional black-box approach do not result in the

same catastrophic failures as in the Brune, but manifest in subtle ways when estimating the mode losses.

These losses, Q−1
p = ωpRpCp depend on the real part of the admittance, R−1

p , and the derivative of the

imaginary part of the admittance, Cp. The former is particularly sensitive to passivity violations, especially

those occurring near resonances, where violations are most common. The latter is sensitive to the slope of

the admittance at the zero crossings. Using a combination of a simple zero crossing detector, essentially a

sign change detector, and a root finding algorithm applied to the neighborhood around the position

returned by the sign change method, we have developed a robust zero crossing detector. On the issue of

passivity violations, there are systematic methods to correct them with minimal changes to the entire

admittance spectrum [98, 99] and countless heuristics that minimally modify the driving point

admittances, but would otherwise significantly change the admittance matrix.9

(a) (b)

Figure 1.10 Losses extracted from the admittance data in Figure 1.9 without a correction to the
admittance in (a) and with a correction in (b). The black dashed line indicates the loss tangent of
sapphire, ∼ 2× 10−8 from [4], as a reference for the scale of the losses for each mode in this device.

For example, the resistance can be small in high Q systems, dropping below zero and leading to

nonphysical, negative losses. The admittance can also have high frequency numerical noise that can lead to

artificial variations in losses as well. We added a small offset to the resistances in the neighborhood of the

problematic resonances to compensate for the negative resistances, usually at low frequencies and near

resonances, then we applied a smoothing routine [100–102] to reduce the roughness of the real part of

Y . Figure 1.9 shows an example frequency response of Re {Y (ω)} with the raw data, shifted data, and

smoothed data.

9Recall that the driving point admittances refer to the diagonal entries in the admittance matrix, which are the only quantities
considered in the lossy Foster black-box approach. Adding a vertical shift to the real part of Y (ω) does not significantly
change the magnitude of derived quantities, such as Q−1

p , but can change their sign. The Brune synthesis uses information
from the entire admittance or impedance matrix, thus ad hoc shifts to one or more of the diagonal matrix elements can have
an outsized effect on the spectrum of the Y or Z matrices, affecting the values of extracted circuit elements.
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The peaks correspond to the resonances observed in the imaginary part of the admittance, where the

resistances are extracted, i.e. at frequencies {ωp}, the orange stars in Figure 1.9 (b). In Figure 1.10, we see

that the losses of the lowest frequency mode become particularly sensitive to the variations in Re {Y },

especially at high values of LJ . Here, LJ is the junction inductance “added by hand” to the admittance

calculated by HFSS to represent a flux-tunable transmon or dc-SQUID as in (1.23). We will return to this

example in Chapters 3 and 4, where we add an inductance to the admittance to represent a nonlinear

inductor (dc-SQUID) used in the 3D galvanic tunable coupler.

1.3.4 Energy Participation Ratio Quantization

The energy participation ratio (EPR) quantization method, developed by Minev et al. [103], bypasses

the problem of model identification in the black-box methods by extracting the linear, normal-mode

Hamiltonian from ratios of capacitive and inductive energies. Driven modal simulations are replaced with

eigenmode simulations that give the electric and magnetic field solutions to the time harmonic Maxwell’s

equations subject to boundary conditions of the geometry under study. Unlike the driven modal case where

the Josephson junctions are replaced by ports and later added to the admittance outside of HFSS, EPR

defines the junctions as lumped element inductors with a finite area represented by a rectangular sheet in

the eigenmode solver. Care must be taken in meshing these structures, as they are often several orders of

magnitude smaller than the largest structures in the model. Seeding the initial mesh, i.e. applying a fixed

length surface mesh to the junctions and surrounding pad structures often improves the convergence of the

adaptive meshing routine in the eigenmode solver.

Along with addressing the numerical concerns of BBQ, the EPR method also places lossy objects on

the same footing as lossless ones with participation ratios associated with dielectric losses, radiative losses,

and seam losses [103]. This formulation emphasizes energies over admittances or impedances, forgoing the

numerical derivative expressions to calculate the mode capacitances and zero crossing detectors with

integrals and eigenvalue problems that have more favorable convergence properties.

Starting with the expression for the (inductive) EPR of the j-th Josephson junction in mode m [103]

pmj = pLmj :=
Inductive energy stored in the j−th junction

Inductive energy stored in the m−th mode

=
〈ψm

∣∣ 1
2EJjϕ

2
j

∣∣ψm〉
〈ψm

∣∣ 1
2H0

∣∣ψm〉 =
1
2EJj 〈ϕ

2
mj〉

1
4 h̄ωm

=
2EJj 〈ϕ2

mj〉
h̄ωm

(1.30)

EJj =
(

Φ0

2π

)2
L−1
Jj

is the Josephson energy associated with the j-th junction. In the last line of Eq. (1.30),

we took the vacuum expectation value, |ψm〉 = |0〉m, as we did in (1.12) and (1.13) to compute the zero

point flux and charge fluctuations.
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Next, we define analogous capacitive EPRs in terms of the zero point Cooper pair number fluctuations

pCmj :=
Capacitive energy stored in the j−th junction

Capacitive energy stored in the m−th mode

=
〈ψm

∣∣4ECjN2
j

∣∣ψm〉
〈ψm

∣∣ 1
2H0

∣∣ψm〉 =
4ECj 〈N2

mj〉
1
4 h̄ωm

=
16ECj 〈N2

mj〉
h̄ωm

(1.31)

where we have introduced the Josephson charging energy ECj = e2

2Cj
, with Cj being the self-capacitance of

the j-th Josephson junction.

The Hamiltonian of a multimode system with NJJ Josephson junctions or Josephson dipoles is given by

a combination of a linear component and a nonlinear component written in terms of a power series in the

phase operators ϕj [103]

Ĥ = Ĥlin + Ĥnlin

=

NM∑
m=1

h̄ωmâ
†
mâm +

NJJ∑
j=1

∞∑
p=4

cjpEjϕ̂
p
j (1.32)

ϕ̂j =

NM∑
m=1

ϕmj
(
âm + â†m

)
(1.33)

where NM is the number of modes and the cjp are given by

cjp =

{
(−1)p/2+1

p! , p even

0, p odd
(1.34)

1.3.5 3D Transmons

The techniques described above were developed to model 3D structures, but what are these 3D

structures and why did they emerge when there was reason to believe that 2D structures offer a

straightforward path to scalability in superconducting circuit-based quantum computers? To address the

first question, we review part of the historical progression of 3D qubits, starting with the first 3D

transmon [5].

This first 3D transmon resembled the rectangular cavity in Figure 1.11, with a slight modification–the

qubit chip was centered along the length of the cavity to maximize the coupling between the qubit and the

fundamental TE101 mode used for readout. Later iterations of the rectangular design [104] shifted the

location of the qubit slightly off-center to couple to the readout mode and the next highest mode, the

TE102 mode, referred to as the storage mode, that was used in early experiments to stabilize integer photon

number Fock states using engineered dissipation [51] among other demonstrations of cavity-based cQED.

21



Qubit Chip

Coupling Pin Indium Seal

Storage ModeReadout Mode

Outgoing SignalIncoming Signal

Qubit Chip

(a) (b)

Figure 1.11 3D transmon in a rectangular cavity [5, 6] including the location of the nodes and antinodes of
the lowest frequency cavity modes TE101 and TE102 in (a) and an exploded view of the assembly to show
the two halves of the cavity separated along the E-plane, where currents flow parallel to seam, minimizing
seam losses.

Compared to the planar transmons, the 3D implementations have much larger capacitor pads to

compensate for the reduce coupling between the transmon dipole moment and the cavity electric field.

These larger pads move the qubit fields away from the surface and into the bulk of the substrate and

vacuum, reducing its sensitivity to interface losses and surface two level system (TLS) loss, discussed in

Section 1.5.4. The rectangular cavity design also has an E-plane seam between the two cavity halves

in Figure 1.11 (b), presenting the seam with parallel currents to minimize seam loss.

Subsequent iterations of 3D transmons used a λ/4 superconducting reentrant post cavity, where the

fields of the fundamental mode are confined to the region near the top of the post, falling off exponentially

above and below the top of the post. With a lid at the top of the cavity where the fields are exponentially

attenuated, this was one of the first cavities to have a seamless design, where the currents at the seam are

negligible [105]. Similar to the rectangular design, the transmon dipole moment is oriented parallel to the

radial electric field between the post and the cavity wall.

Another seamless design involved intersecting drill holes to define rectangular and, in principle,

arbitrary shaped cavities in the overlapping hole regions [106]. The holes are of a radius and a depth such

that, away from the overlapping regions, the field is evanescent in those sub-cutoff cylindrical cavities,

similar to the reentrant cavity with negligible seam loss.

1.4 Tunable Couplers

Quantum computers are limited by their two qubit gate performance, regardless of their physical

realization. Early coupling schemes of superconducting qubits used fixed capacitive or mutual inductive

coupling between qubits.
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To perform gates, either the qubit frequencies were tuned in resonance with one another and energy

was resonantly exchanged between them or a control qubit was driven at the resonance frequency of a

target, enacting the so-called cross-resonance gates [107]. Although the hardware requirements for cross

resonance gates are much lower than their tunable coupling counterparts, the latter continues to

outperform the former in gate speeds and fidelities.10 There is a tradeoff between gate speed and qubit

coherence, with increased tunability there is an increase in the number of control lines and loss mechanisms

from flux or charge used to control the tunable element compared with fixed coupling schemes.

In Figure 1.12, we summarize several recent tunable coupler architectures in both 2D superconducting

circuits and 3D superconducting cavities. As expected, the general trend over time is towards higher gate

fidelity, or lower gate infidelity (1 - fidelity), and an increasing number of gate operations. We will return

to this figure when considering the three coupling modalities in the next section, highlighting the galvanic

couplers and capacitive couplers which this thesis presents novel designs for both.

Figure 1.12 Comparison of tunable coupler two qubit gate fidelities as a function of the number of expected
operations in a coherence time (coherence time / gate time). Labels correspond to the following references:
Chen 2014 [7], Lu 2017 [8], Gao 2018 [9], Yan 2018 [10], Weiss 2022 [11], Chapman 2023 [12], Jin 2023 [13],
Chen 2023 [14], Kubo 2023 [15], Lu 2023 [16].

10We separate gate speed from fidelity here, as a figure of merit when evaluating quantum computing platforms with disparate,
dominant error models as the number of operations performed before the quantum state has dissipated or dephased is a more
fair comparison between different architectures.
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1.4.1 2D Systems

We start with a brief survey of the 2D coupler landscape, discussing the advantages and disadvantages

of the three coupling types. In Figure 1.13, we give three example circuits illustrating coupling between

two fixed frequency or tunable frequency transmon qubits. Figure 1.12 subdivides the coupling types based

on the control signals used (V for voltage or charge and Φ for flux bias or current). This distinction is

necessary to separate the errors induced by stray control line coupling, charge and flux noise on the control

line, and noise seen by the individual qubits. Table 1.3 organizes the coupling types and control signals,

along with the form of the physical interaction Hamiltonian between charge or flux degrees of freedom.

1.4.2 Operating Principles and Coupler Taxonomy

The operating principles of the three coupler types are summarized as follows. A capacitive coupler of

the form drawn in Figure 1.13 mediates a charge-charge interaction between qubits in contact with an

effective capacitor. The capacitance is tuned by applying a gate voltage to a

superconducting-semiconducting (super-semi) structure or threading magnetic flux through a SQUID that

is itself capacitively coupled to the two qubits. The mutual inductive coupler is a superconducting loop

interrupted by one or more Josephson junctions11 that couples nearby qubits by mutual inductances

between the coupler and two qubits. Threading a magnetic flux through the superconducting loop modifies

the coupling between the qubits and coupler, modifying the coupling between the qubits.

The capacitive coupling type leads to purely charge-charge like interactions and the inductive coupling

leads to flux-flux interactions. In both flux-driven couplers, the inductive and capacitive couplers in the

first and third lines of Table 1.3, the coupler and connected qubits are susceptible to stray magnetic fields

and 1/f -like flux noise on the coupler control line. The purely charge-driven coupler is only sensitive to

charge noise on the control line, but charge noise sensitivity is exponentially suppressed in transmon

qubits, as was discussed in Section 1.2.5. In Chapter 2, we will present a coupler design with the same

materials as [14], with estimates of its coherence limits based on detailed multiscale modeling of the

semiconductor physics, electrostatics of the coupler itself, and the full-wave electromagnetic behavior of the

coupler embedded in a typical two-transmon qubit microwave circuit [48].

In the galvanic coupler, due to details of the geometry in [8], both charge and flux interactions are

present.

11A superconducting loop interrupted by one junction is an rf-SQUID and a loop interrupted by two Josephson junctions is a
dc-SQUID. See [67] for a complete treatment of the theory, operation, and applications of SQUIDs.
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The consequences of this type of coupling are highlighted in [8]: (1) stronger coupling relative to purely

inductive or capacitive coupling by currents shared between the qubit and cavity, (2) an interaction that

combines both red and blue sidebands, aptly named the “purple” sideband with higher fidelity in

stabilizing states than either sideband enacted alone, and (3) the possibility of realizing non-stoquastic

Hamiltonians, whose ground states cannot be easily simulated with quantum Monte Carlo12 [108].

M M
C

L

Capacitive
(charge)

L

C C

Capacitive
(charge)

Inductive
(flux)

Capacitive
(flux)

Galvanic
(flux)

Galvanic
(Lu et al., 2017)

Figure 1.13 2D tunable coupler types.

To generate the red and blue sidebands, or any parametric process for that matter, it is helpful to

review rotating frame transformations. Given a Hamiltonian describing a circuit with two nodes

corresponding to two nodal flux variables φ1 and φ2, couplings in both charge and flux as in the last row

of Table 1.3, and all Josephson junctions replaced by linear inductors for simplicity, we have

Ĥ =
1

2

(
L−1

1 φ2
1 + L−1

2 φ2
2 + C−1

1 q2
1 + C−1

2 q2
2 + 2M12φ1φ2 + 2C−1

12 q1q2

)
(1.35)

For the sake of introducing the rotating frame transformation and reviewing the mechanics of driving red

and blue sidebands rather than dwelling on the procedure of constructing the Hamiltonian from a circuit

Lagrangian, we assert that the charges and fluxes are canonically conjugate, i.e. [φ̂j , q̂k] = ih̄δjk and they

can be represented with bosonic creation and annihilation operators, as in Section 1.2.1

(φ̂j = φZPF
j

(
âj + â†j

)
), q̂j = −iqZPF

j

(
âj − â†j

)
and rewrite (1.35) in terms of âj , â

†
j .

12Hamiltonians that cannot be simulated by classical methods such as quantum Monte Carlo are considered good candidates
for quantum simulators that do not suffer from the Fermi sign problem as classical computers do.
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The resulting Hamiltonian then takes the form

Ĥ =
∑
j=1,2

{[
L−1
j

(
φZPF
j

)2
+ C−1

j

(
qZPF
j

)2] (
â†j âj + 1/2

)
+

1

2

[
L−1
j

(
φZPF
j

)2 − C−1
j

(
qZPF
j

)2] (
â2
j + â† 2

j

)}
+
(
M12φ

ZPF
1 φZPF

2 + C−1
12 q

ZPF
1 qZPF

2

) (
â†1â2 + â1â

†
2

)
+
(
M12φ

ZPF
1 φZPF

2 − C−1
12 q

ZPF
1 qZPF

2

) (
â1â2 + â†1â

†
2

)
(1.36)

Using the definitions of the zero point fluctuations from (1.11) and (1.10), φZPF
j = (h̄ωjLj/2)

1/2
,

qZPF
j = (h̄ωjCj/2), ωj = (LjCj)

−1/2
, we rewrite (1.36) in a more suggestive form

Ĥ =
∑
j=1,2

h̄ωj

(
â†1â1 + 1/2

)
+
h̄

2
(ω1ω2)

1/2
[
M12 (L1L2)

1/2
+ C−1

12 (C1C2)
1/2
] (
â†1â2 + â1â

†
2

)
+
h̄

2
(ω1ω2)

1/2
[
M12 (L1L2)

1/2 − C−1
12 (C1C2)

1/2
] (
â1â2 + â†1â

†
2

)
=
∑
j=1,2

h̄ωj

(
â†1â1 + 1/2

)
+ h̄gBS,12

(
â†1â2 + â1â

†
2

)
+ h̄gTMS,12

(
â1â2 + â†1â

†
2

)
(1.37)

where we identify the beam splitter gBS and two mode squeezing rates gTMS. We note that the
(
â2
j + â† 2

j

)
single mode squeezing terms exactly canceled with each other and control of M12, C

−1
12 could cancel the

beam splitter or two-mode squeezing terms or give couplings that are negative [8].

Table 1.3 2D coupler types, control signals, and interaction Hamiltonians

Coupling type dc bias ac bias Ĥint Reference

Capacitive flux flux 1
2C
−1
12 q1q2 Yan et al. (2018) [10]

Capacitive charge charge 1
2C
−1
12 q1q2 Chen et al.(2023) [14]

Inductive flux flux 1
2M12φ1φ2 Chen et al. (2014) [7]

Galvanic flux flux 1
2M12φ1φ2 + 1

2C
−1
12 q1q2 Lu et al. (2017) [8]

1.4.3 Parametric Modulation

Next, we consider modulating the inductive and capacitive couplings M12 and C−1
12 in time as

M12 → M̄12 + δM12 sin (ωsbt) and C−1
12 → C̄−1

12 + δC−1
12 sin (ωsbt) which, in turn, modulates the beam

splitter and two mode squeezing interaction strengths. The δ’s indicate the modulation amplitudes, treated

as small perturbations to the dc values M̄12 and C̄−1
12 .
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Expanding gBS,12 and gTMS,12 about M12 = M̄12 and C−1
12 = C̄−1

12 to first order13,14

gBS,12(M12, C
−1
12 ) ≈ gBS,12(M̄12, C̄

−1
12 ) + δM12 sin (ωsbt)

∂gBS,12

∂M12

∣∣∣∣
M12=M̄12

+ δC−1
12 sin (ωsbt)

∂gBS,12

∂C−1
12

∣∣∣∣
C−1

12 =C̄−1
12

=
1

2
(ω1ω2)

1/2
{[
M̄12 (L1L2)

1/2
+ C̄−1

12 (C1C2)
1/2
]

+
[
δM12 (L1L2)

1/2
+ δC−1

12 (C1C2)
1/2
]

sin(ωsbt)
}

= ḡBS,12 + εgBS,12
sin (ωsbt) (1.38)

Similar algebra gives the two mode squeezing strength as

gTMS,12(M12, C
−1
12 ) ≈ 1

2
(ω1ω2)

1/2
{[
M̄12 (L1L2)

1/2 − C̄−1
12 (C1C2)

1/2
]

+
[
δM12 (L1L2)

1/2 − δC−1
12 (C1C2)

1/2
]

sin(ωsbt)
}

= ḡTMS,12 + εgTMS,12 sin (ωsbt) (1.39)

Now we introduce a rotating frame transformation that is a generalization of Eq. (8) of the

supplemental information of [109] defined by the unitary operator Û(t) = exp
[
i
∑
j=1,2 (ωjt) â

†
j âj

]
acting

on the Hamiltonian in (1.37) with the time-dependent couplings as in [109, 110]

Ĥ(t)→ Ĥ ′ = Û(t)Ĥ(t)Û(t)† − ih̄Û(t)∂tÛ
†(t) (1.40)

To ease the calculation of (1.40), we write down the action of Û on the operators âj , â
†
j using the

Baker-Campbell-Hausdorff formula and calculate the Berry’s phase term −iÛ(t)∂tÛ(t) below

Û(t)âkÛ
†(t) = eS âke

−S = âk + [S, âk] +
1

2
[S, [S, âk]] + . . .+, S =

∑
j=1,2

ωj â
†
j âj

= âk + (−iωkt) âk +
1

2
(−iωkt)2âk + . . .+ = âke

−iωkt (1.41)

−iÛ(t)∂tÛ
†(t) = −

∑
j=1,2

h̄ωj â
†
j âj (1.42)

13In this example, gBS,12 and gTMS,12 are linear in M12 and C−1
12 . We can evaluate these derivatives analytically and higher

order derivatives vanish, as well as mixed derivatives such as ∂2gBS(TMS),12/∂M12∂C
−1
12 = 0. Of course, this does not hold

in the general case, as we will see in the field overlap integral method presented in Chapter 3.
14There are alternative ways to express coupler and frequency modulation, separately, which are discussed at length in Lu’s

thesis [77] and elsewhere [109–111]. We chose this approach because in Chapter 3, we found that this scheme works in the
case where both the mode frequencies and couplings are modulated simultaneously. In fact, we could perform a change of
basis where that is the case in this setting, but chose this basis instead to focus on the coupling modulation.
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Applying the transformation in (1.40) to (3.16), we see that the Berry’s phase contribution in (1.42)

cancels the resonant term, up to the ground state energy
∑
j=1,2 h̄ωj/2 which we drop here and arrive at

the modulated Hamiltonian in the rotating frame

Ĥ/h̄ =
(
ḡBS,12 + εgBS,12

sin (ωsbt)
) (
â†1â2e

−i(ω2−ω1)t + h.c.
)

+
(
ḡTMS,12 + εgTMS,12

sin (ωsbt)
) (
â1â2e

i(ω2+ω1)t + h.c.
)

(1.43)

Setting the modulation frequency ωsb to the sum or difference frequency (ω2 ± ω1) makes either the two

mode squeezing term or the beam splitter term stationary, with the remaining terms oscillating rapidly

relative to the stationary terms, averaging to zero over time. The terminology of red and blue sidebands is

evident, as the terms with phase factors containing the difference frequencies (longer wavelength) are

referred to as “red” and the terms with sum frequency phase factors (shorter wavelength) are labeled

“blue.” We note that with this type of coupling it is possible to engineer multiple drives to simultaneously

activate both processes, with a multi-tone modulation scheme.

1.4.4 3D Systems

Many of the concepts from the 2D tunable couplers transfer to 3D systems, with the physical

implementation and packaging approaches significantly varying. We will also discuss how the form of the

nonlinearity plays a role in realizing a particular process such as beam splitting. In Table 1.4, we organize

the three 3D couplers in Figure 1.14 by their coupling, control signals, and the form of the driving scheme

used to induce parametric operations. Unlike in the 2D case where the tunable couplers were used as

general purpose coupling elements or to stabilize arbitrary quantum states, couplers in 3D have been used

primarily as high fidelity beam splitters. The primary motivations behind focusing on beam splitting at

this point in 3D cavity development are (1) to demonstrate high fidelity SWAPs and entangling gates for

digital and continuous variable quantum computing and (2) to support dual rail qubit encodings [112, 113].

In Table 1.3, the coupling types are limited to capacitive and inductive/capacitive, depending on how

one defines coupling. There are practical reasons for the lack of inductive or galvanic coupling in 3D. Until

recently, the most obvious and simplest way to couple a transmon or another nonlinear Josephson

junction-based or kinetic inductance-based object to electric fields in a cavity with cylindrical symmetry is

by an antenna or dipole-like coupling. The analogy with cavity QED and 2D capacitive coupling is clear

and straightforward to implement: orienting the transmon or other nonlinear object parallel to the electric

field of a cavity mode provides sufficiently strong coupling, with a clear trade-off between the coupling

strength and dielectric loss depending on the insertion depth of the chip into the cavity.
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In short, the deeper the chip protrudes into the cavity field, the stronger the coupling between the

coupler and the cavity, yet there is a commensurate increase in the dielectric loss with insertion depth.15

Table 1.4 3D coupler types, control signals, and driving schemes

Coupling type dc bias ac bias Driving Scheme Reference
Capacitive - charge 2-tone, 4 wave mixing Gao et al. (2018) [9]
Capacitive flux charge 1-tone, 3 wave mixing Chapman et al. (2023) [12]
Inducitive/Capacitive flux charge 2-tone Lu et al. (2023) [16]

The beam splitter in the first row of Table 1.4 differs from the 2D couplers discussed in 1.4.2 in that it

does not have a dc bias. This early realization of a microwave beam splitter used a fixed frequency

transmon driven with two charge drives with frequencies ω1 and ω2. The beam splitter interaction is

activated when the difference between the two drives is equal to the difference between the two cavity

frequencies by a 4 wave mixing (4WM) process inherent in the quartic nonlinearity of the Josephson

junction cosine potential of the transmon coupler. In this driving scheme, the beam splitter coupling

g(t) =
√
χacχbcξ1(t)ξ2(t), where χjc is the cross-Kerr coupling between the j-th cavity mode and the

coupler and ξj(t) is the j-th classical, time-varying drive amplitude. Although the coupling strength is

proportional to the drive strength, the cross-Kerr’s are small relative to the capacitive or inductive

coupling achieved in 2D systems [9]. The typical g’s achieved in 2D devices are on the order of hundreds of

MHz, whereas the 3D beam splitter had a g on the order of tens of kHz (a few µs in time to enact one

beam splitter operation), which was large compared to the bare coupling between the cavities and the

coherence time of the cavities was hundreds of µs [9].

Following the transmon-based beam splitter, a similar capacitive coupling between a Superconducting

Nonlinear Asymmetric inductive eLement (SNAIL) and two cavities achieved a beam splitter rate on the

order of hundreds of kHz, with the number of operations relative to the coherence time exceeding 103 [12],

more than an order of magnitude improvement over [9]. The SNAIL enables a 3 wave mixing (3WM)

process when dc-biased such that only odd terms of its Josephson potential are enhanced and unwanted,

parasitic fourth-order processes are suppressed. Applying a single charge drive to the coupler at the

difference frequency of the cavities activates the beam splitter operation as opposed to two tones in the

4WM transmon coupler. The combination of higher coherence cavities, a faster beam splitter rate,

suppression of unwanted fourth order processes, and single tone rather than two tone control sets this

coupler [12] apart from the previous iteration with a transmon [9].

15There is another regime relevant to cavity control, where the coupling is comparable to the loss rates of the qubit and cavity,
the weak dispersive regime. Under these conditions, the echoed conditional displacement gate converts the weak 4 wave
mixing interaction into an enhanced 3 wave mixing, circumventing both the interaction limit of 2π/χ while reducing the
participation of the transmon and its substrate with the cavity fields [114].
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The form of coupling, capacitive, as in all other 3D transmon and related 3D qubit implementations,

remained unchanged until a recent experiment explored an inductive coupling scheme.
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Figure 1.14 State of the art 3D, parametrically activated microwave beam splitters, reproduced with
permission from (a) two-tone, four-wave mixing, transmon controlled beam splitter [9], (b) differentially
driven SQUID coupler [16], and (c) a single tone, three-wave mixing SNAIL coupler [12].

Lu et al. [16] devised a tunable coupler where a SQUID is located near the bottom of and oriented

parallel to the axis of a reentrant λ/4 post cavity. This orientation serves two purposes: first, is to allow

magnetic fields from the cavity to thread the SQUID and thereby supply an ac flux bias with a charge

drive and second, to orient the SQUID dipole moment to be perpendicular to the electric field of the cavity,

minimizing Purcell losses. The lowered position of the SQUID in the cavity takes full advantage of the

asymmetry in electric and magnetic field intensities in λ/4 post cavities, where the electric fields are

minimized and the magnetic fields are maximized near the bottom of the cavity, as illustrated

in Figure 1.14 (b).

There is additional parity protection in this design, as the common mode of the SQUID couples to the

cavities, but the magnetic fields only couple to the differential mode. By common and differential modes,

we refer to the orientation of the currents across the two Josephson junctions of the SQUID. The common

mode refers to the parallel current orientation and the differential mode refers to the antiparallel current

orientation. This separation of coupler and “accuator” modes minimizes coupler heating or populating the

coupler mode with photons from the drive when performing beam splitter operations [16].
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To activate beam splitter interactions, the differential mode of the SQUID is driven with two tones that

are detuned by the same amount as the detunings between the two coupled cavity mode frequencies. The

buffer cavity that supplies the ac magnetic fields to the SQUID is designed to have a bandwidth close to

the detuning of the cavities and the coupler mode is placed much higher in frequency than the buffer cavity

and the cavities involved in the beam splitter operation to further suppress Purcell loss [94]. Finally,

compared to the two other beam splitters discussed above, this implementation achieved a beam splitter

rate on the order of 5 MHz, a significant improvement over the previous iterations, yet well below the

highest equivalent rates achieved in 2D systems.

The steady improvement in coupling strengths achieved with 3D beam splitters over the last five years

is impressive, given that the strongest known coupling from the 2D superconducting qubit community has

not been explored. In Chapter 4, we present a coupler that borrows features of the differentially driven

SQUID coupler and the galvanic 2D coupler, both developed by the same lead author. We will highlight

the strengths and challenges of this design compared to previous 3D designs and 2D designs, as well as

apply the field analysis techniques presented in Chapter 3 to estimate beam splitter, single-mode, and

two-mode squeezing rates.

1.5 Superconducting Microwave Resonators

This section attempts to consolidate the relevant theoretical and experimental techniques related to the

investigation of materials loss mechanisms in superconducting circuits and cavities.

Figure 1.15 Transmission line circuit models. (a) Distributed element circuit model with voltages and
currents and (b) the equivalent transmission line circuit shorthand.

1.5.1 Microwave Circuit Theory

We would be remiss if there was no coverage of microwave circuit theory, namely the tools that this

thesis references in both the tunable coupler design and loss measurement thrusts. There a number of texts

that give a more thorough treatment than what can be covered here, including the defacto Pozar [115], its

predecessor Collin [116], the lesser known Harvey [117], and many other others.
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This section will follow Chapter 3 and 4 of Collin [118, 119], introducing impedances, admittances, and

scattering parameters related to passive, linear networks. These concepts will follow from the transmission

line circuit model, which we will use to derive the Telegrapher’s equations and introduce voltage and

current phasors (see V ± in Figure 1.15 (a)).

Applying Kirchhoff’s voltage law to the loop in Figure 1.15 (a), including the input voltage, series

resistor, series inductor, and output voltage gives

V = RI dz + L
∂I

∂t
dz +

(
V +

∂V

∂z
dz

)
−∂V

∂z
= RI + L

∂I

∂t
(1.44)

where in the second line of (1.44) we divided through by dz, dz → 0. Kirchhoff’s current law applied to

the shunt elements gives

I = GV dz + C
∂V

∂t
dz +

(
I +

∂I

∂z
dz

)
−∂I

∂z
= GV + C

∂V

∂t
(1.45)

Differentiating (1.44) by z and (1.45) by t gives the pair of second order partial differential equations

−∂
2V

∂z2
= R

∂I

∂z
+ L

∂2I

∂t∂z
(1.46)

−∂
2I

∂z∂t
= G

∂V

∂t
+ C

∂2V

∂t2
(1.47)

Eliminating the mixed derivative terms and taking I to be a continuous, twice differentiable function16

∂2V

∂z2
= RGV + (RC + LG)

∂V

∂t
+ LC

∂2V

∂t2
(1.48)

As we alluded to above, I satisfies the same equation as V and can be derived by differentiating (1.44) by

t and (1.45) by z and eliminating the mixed derivative term to find

∂2I

∂z2
= RGI + (RC + LG)

∂I

∂t
+ LC

∂2I

∂t2
(1.49)

16We can exchange the order of partial derivatives, which is a valid assumption as we will see it is a solution to the same second
order partial differential equation as V .
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We use the ansatz for V = Re
{
V eiωt

}
and I = Re

{
Ieiωt

}
, with i the imaginary unit i =

√
−1, and

substitution of these expressions into the first order partial differential equations, (1.44) and (1.45) gives

−∂V
∂z

= (R+ iωL) I (1.50)

−∂I
∂z

= (G+ iωC)V (1.51)

The phasors V and I are complex, time-independent functions of z that are themselves linear combinations

of left and right propagating waves of the form

V = V +e−γz + V −eγz (1.52)

I = I+e−γz − I−eγz (1.53)

where γ = α+ iβ is the complex propagation constant with α the attenuation constant and β the phase

constant. Substituting the expression for the voltage in terms of the phasors from (1.52) into the wave

equation in (1.48) and eliminating the common ejωt factors gives

[
γ2 −

(
RG− ω2LC

)
− iω (RC + LG)

] (
V +e−γz + V −eγz

)
= 0 (1.54)

For arbitrary V ± the bracketed expression vanishes and the propagation constant is equal to

γ =
[
RG− ω2LC + iω(RC + LG)

]1/2
= [(R+ iωL)(G+ iωC)]

1/2
(1.55)

From the expressions for the propagation constant, the voltage and current phasors, and first order

equations for V and I, (1.50) and (1.51), the voltage and current amplitudes are related by

I =
γ

R+ iωL

(
V +e−γz − V −eγz

)
(1.56)

Here we have shown how the full wave problem, in terms of electric and magnetic fields, reduces to a

distributed element description in terms of V ±, I± whose ratios are the characteristic impedance of the

line, i.e. Zc = V +/V − = I+/I− = [(R+ iωL)/(G+ iωC)]
1/2

, Zc = (L/C)
1/2

in the lossless case.
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If now we consider an N -port network, with a port defined as a pair of conducting terminals, the

phasor17 currents and voltages Ij Vj at the j-th port are related to the impedances Zij by


V1

V2

...
VN

 =


Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
...

. . .
...

ZN1 ZN2 . . . ZNN



I1
I2
...
IN

 (1.57)

and Y = Z−1 the admittance matrix, is related to the currents and voltages by


I1
I2
...
IN

 =


Y11 Y12 . . . Y1N

Y21 Y22 . . . Y2N

...
...

. . .
...

YN1 YN2 . . . YNN



V1

V2

...
VN

 (1.58)

where the matrix elements of Z and Y are calculated by ratios of currents and voltages at ports i and j

with the remaining ports either open or short circuit terminated, i.e.

Zij =
Vi
Ij

∣∣∣∣
Ij 6=k=0

(1.59)

Yij =
Ii
Vj

∣∣∣∣
Vj 6=k=0

(1.60)

In Section 1.3.1, we referenced impedance and admittance matrices to design superconducting circuits and

study loss in superconducting resonators, but expound on them here for completeness. These quantities,

namely the voltages and currents, are not easily measurable at microwave frequencies, but the amplitude

and phase of transmitted and reflected waves can be obtained from instruments such as vector network

analyzers. A third set of parameters described by the matrix S relate incident waves V + to scattered waves

V − in an N -port network by


V +

1

V +
2
...
V +
N

 =


S11 S12 . . . S1N

S21 S22 . . . S2N

...
...

. . .
...

SN1 SN2 . . . SNN



V −1
V −2

...
V −N

 (1.61)

Unlike in the impedance and admittance parameter conditions where all ports besides the port being

excited are either open or short circuited, the scattering parameters are measured when all other ports

besides the active port are terminated with a matched load. This is a preferred termination over open or

short circuited terminations that are either not possible or undesirable for certain microwave devices.

17We will omit the phasor qualifer for the remainder of this chapter as it is understood that I and V refer to phasors.
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The Z, Y, and S parameters all pertain to linear, passive networks used throughout this thesis, with

nonlinear elements treated by separate means.18 There are generalizations of the S parameters, namely the

X-parameters, that describe nonlinear devices. These parameters are particularly useful in the design and

analysis of amplifiers and have recently entered the superconducting qubit and circuit communities in the

design of near-quantum-limited, broadband parametric amplifiers [120].

1.5.2 Microwave Measurement Techniques

In the previous section, we introduced the theory of scattering parameters to preface a discussion of

commonly performed transmission and reflection measurements. Vector nework analyzers (VNAs) are the

workhorse of these measurements, capable of measuring the N2 matrix elements of the S-matrix in a

passive, linear N -port network. Either S11, the reflection coefficient of a single port network, or S21 the

transmission coefficient of a two port network, are measured to extract the total (or loaded) Ql, internal

Qi, and coupling (or external) Qc quality factors of microwave resonators, as well as to characterize

microwave circuits in general.

Vs
Cr Lr Rr

Cc

Zs

Zout
+

−

+

−
Vout

Cr Lr Rr

CcZs

Zout
+

−

+

−
VoutVs

Cc

Cr Lr Rr

CcZs

+

−
Vs

(a) (b) (c)

Figure 1.16 Equivalent resonator coupling networks. (a) Hanger mode, (b) transmission, and (c) single-port
reflection mode. Based on and reproduced with permission from [17].

There are several models that describe the frequency response of a resonator circuit depending on the

coupling geometry (See Figure 1.16) and the S-parameter being measured. The transmission and reflection

coefficients, S21 and S11, respectively, depend on the resonance frequency ω0, the quality factors, and a

parameter describing the asymmetry of the resonance, i.e. the degree of departure of the lineshape of the

resonance from a symmetric Lorentzian. Among these models is the diameter correction method (DCM),

where the transmission coefficient is given by [121]

S21(ω) = (1 + ε̂)

(
1− Ql|Q̂−1

c |eiφ

1 + 2iQl
ω−ω0

ω0

)
(1.62)

18See the black-box quantization [95] and energy participation ratio [103] methods in Sections 1.3.1 and 1.3.4
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In (1.62) Q̂c is a complex expression related to the magnitude of the coupling quality factor Qc and the

phase angle capturing the asymmetry of the resonance. The complex factor ε̂ is a function of the input

impedance of the total measurement circuit, including the resonator and its coupling to a transmission

line [121]. In practice, it is assumed to be small in magnitude (|ε̂| � 1) and fit as a free parameter in the

model. Figure 1.19 shows an example of this fit without the complex (1 + ε̂) prefactor. The loaded quality

factor Ql is related to the coupling and internal quality factor Qi in this model by [121]

Q−1
l = Q−1

i + Re
{
Q̂−1
c

}
(1.63)

This is analogous to the typical expression Q−1
l = Q−1

i +Q−1
c where all Q’s are real-valued and add as

resistors in parallel, as losses (inverse quality factors) in this setting are additive. There are three coupling

regimes, summarized in Table 1.5, with the critically coupled and undercoupled limits preferred for loss

extraction experiments over the overcoupled limit. As we will discuss below, the error on the DCM fit of

Qi is a quadratic function of Qi/Qc, minimized at Qi/Qc = 1 and of a few percent in fractional error up to

one order of magnitude above and below critical coupling [122].

Table 1.5 Coupling limits in resonators

Limit Condition Consequence
Qc � Qi Overcoupled Sensitivity to Qc
Qc ∼ Qi Critically coupled Equal Qc, Qi extraction
Qc � Qi Undercoupled Sensitivity to Qi

Transmission measurements of coplanar waveguide (CPW) resonators are among the most common

high-throughput measurements used in superconducting materials loss studies. We will discuss methods to

improve the speed and accuracy of transmission measurements modeled by the DCM and the same model

without the complex (1 + ε̂) prefactor, omitting techniques related to the other measurement modes

in Figure 1.16. Recent work by Baity et al. [122] investigated the sensitivity of the DCM fit on the

frequency point distribution in the Im {S21} , Re {S21} complex plane as in the left panel

of Figure 1.19. Baity et al. showed that a linear point distribution can lead to biases in the errors of the

extracted Qi values as the ratio between the linewidth κ/2π = fc/Ql of the resonance and the span of the

measurement δf exceeds approximately 18, i.e. when the span is more than 18 linewidths wide. Typical

measurements with linear point distributions have spans of approximately 21 linewidths, ten on either side

of the resonance with one near resonace, at high power and fewer as the power decreases and the linewidth

increases until it saturates when the TLS loss saturates at powers on the order of a few photons per second.
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Baity et al. considered the phase-frequency relationship that Gao [66] stated and Probst et al. [123]

separately investigated

θ(f) = θ0 + 2 arctan (2Ql(1− f/fc)) (1.64)

f(θ) = fc

(
1− 1

2Ql
tan

(
θ − θ0

2

))
(1.65)

where the phase (θ − θ0) ∈ (−π, π) and θ0 is chosen to be π/32 in the scresonators implementation of

what is referred to as a homophasal point distribution [18]. This uniform distribution in phase, hence

homophasal, leads to a uniform spacing of points in the complex plane of S21. In Figure 1.17, we simulated

three point distributions to illustrate the effect of the distributions on the error of the estimated Qi. We

added white Gaussian noise with a standard deviation of -20 dB to both the real and imaginary parts of

the signal using a pseudorandom number generator with independent seeds for the two quadratures (real

and imaginary parts).

A compromise between the full homophasal and the linear point distribution is shown in Figure 1.17

(b), where we have defined three linear segments (the lengths and locations of the segments are indicated

in the shaded regions of the magnitude of S21) of different point densities to approximate the homophasal

distribution. This segmented sweep improves the error on the fit to Qi compared to the linear point

distribution and does not require knowledge of the loaded quality factor as in the homophasal point

distribution. We recently became aware of similar segmented sweeps implemented by Satzinger et al. [124],

where three linear frequency segments were used, two sparse segments off-resonance and one dense segment

on-resonance.

(a) (b) (c)

5 591

Figure 1.17 Simulated resonator responses. (a) Linear point distribution, (b) three segmented point
distribution, (c) homophasal point distribution. Resonator parameters are
Qi = 106, Qc = 5× 105, fc = 5 GHz, φ = 0.

Along with transmission measurements, there are reflection-based measurements involving single port

devices where the same port acts as the input and output of the measurement.
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Signals are routed to the device with a single cable, as in Figure 1.16 (c) or a circulator, a three-port

non-reciprocal device as in Figure 1.18, that preferentially transmits signals between ports in the sequence

1→ 2→ 3→ 1.

1

3

2

1

3

2

1 2

(b) (c)

Cr Lr Rr

CcZs

Zout
+

−

+

−
VoutVs

Cc

(a)

Figure 1.18 Circulators and isolators in microwave measurements. (a) A reflection mode measurement
taken by measuring S21 with a circulator. (b) Three port circulator, (c) isolator and an equivalent
circulator with its third port terminated by a 50 Ω load (black filled square on port 3).

The ideal circulator scattering matrix is given by [115]

Scirc =

0 0 1
1 0 0
0 1 0

 (1.66)

Often circulators contain an anisotropic ferrite material that presents incident electromagnetic waves with

a different magnetic permeability, depending on the waves’ direction of propagation. This difference in

magnetic permeability leads to directional wave propagation and approximates the ideal circulator

scattering parameters. The departures from this ideal include signals being transmitted in the reverse

direction (quoted as isolation or the degree to which leakage does not occur), losses from resistive elements

in the device, and variations in the frequency response that differ from the frequency-independent, ideal

case in (1.66).

Recent work by Rieger et al. [125] showed that unaccounted for signal paths, e.g. signals propagating in

the reverse direction of what a circulator is designed to support, can lead to interference between the

forward and reverse signals, giving rise to Fano interference [126, 127]. The hallmark of Fano interference is

an observed asymmetry in the lineshape of a resonance, which is accounted for in the DCM model by the

phase angle φ.
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Figure 1.19 DCM fit using the scresonators software package [18] of an Al CPW patterned on InP by W.
M. Strickland at New York University.

A model similar to the DCM describes the signal S21 measured with a circulator connected to a device

in reflection-mode, referred to as the DCM reflection model [18]

S21(ω) = 1− 2Ql/Qce
iφ

1 + 2iQl
ω−ω0

ω0

(1.67)

1.5.3 Loss Mechanisms in Superconducting Resonators

Superconducting resonators, fabricated as monolithic 3D structures or integrated microwave circuits,

are subject to the noise power spectral density of their microwave transmitter/receiver chain, surface and

interface defect composition and density, infrared radiation, ionizing radiation, magnetic vortices, and

thermally-induced quasiparticle generation, i.e. the temperature dependent behavior of the

superconducting complex conductivity. The following sections will focus on the dominant intrinsic,

materials sources of noise in superconducting qubits described by an ensemble of two level systems (TLS)

and temperature dependent loss described by the Mattis-Bardeen theory that connects the surface

impedance of superconductors to the internal quality factor and resonance frequency of a given resonator.
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Figure 1.20 Double well potential representing a single TLS. Tunneling rate ∆0 and asymmetry ∆ shown,
with the energy splitting between the ground state and first excited state ε. Left and right well-localized
eigenstates denoted |L(R)〉 and energy eigenstates labeled |ψ±〉. Based on and reproduced with permission
from [19].

1.5.4 Losses from Two Level Systems

In Gao’s thesis [66], he traces the history of the development of noise models in superconducting

resonators and qubits to his experiments with microwave kinetic inductance detectors (MKIDs [65]) and

observations from the single electron transistor (SET) community of correlated charge noise between

neighboring SETs [128]. MKIDs are superconducting resonators that respond to radiation deposited on

them with energy large enough to break Cooper pairs and generate quasiparticles (normal electrons). The

next section on losses from the conductivity of superconductors describes the relationship between a change

in temperature, either by the environment or photons depositing their energy in the substrate, and a shift

in the resonance frequency of a superconducting resonator or MKID. This shift gives information about the

energy of the incident photon, with a sensitivity bounded by the rate of quasiparticle

generation-recombination. The large disparity between the quality factors (inverse losses) of the resonators

in Gao’s experiments and that expected by quasiparticle dynamics motivated a systematic investigation of

the noise observed in superconducting resonators which became the focus of his PhD thesis [66].

Hints that this excess noise had a material origin came when aluminum resonators patterned on

sapphire substrates had significantly lower noise than those patterned on silicon. The SET

experiment [128] and work by the superconducting qubit community [129] further corroborated this

materials source of noise in amorphous dielectrics. Earlier investigations of the behavior of

glasses [130–132] presented a model that resembled the losses reported by [133], among others, that is

referred to as the standard tunneling model (STM) of two level systems (TLSs) [19].
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A prototypical model for a TLS is a particle in a double well potential (see Figure 1.20) with

asymmetry19 ∆ and a barrier large enough that thermally activated hopping between the wells is

suppressed and quantum tunneling between the wells dominates with tunneling matrix element ∆0 [19, 66].

The Hamiltonian for a single TLS in the basis referencing states localized to the left and right wells

{|L〉 , |R〉} is given by

ĤTLS =
1

2
∆σ̂z +

1

2
∆0σ̂x

=

(
∆ ∆0

∆0 −∆

)
(1.68)

where σ̂z = (|R〉 〈R| − |L〉 〈L|) and σ̂x = (|R〉 〈L|+ |L〉 〈R|) [19]. The energy eigenbasis {ψ+, ψ−} is related

to the local basis by the unitary transformation

(
|ψ+〉
|ψ−〉

)
=

(
sin(θ/2) cos(θ/2)
cos(θ/2) − cos(θ/2)

)(
|L〉
|R〉

)
(1.69)

with |ψ+〉 the ground state and |ψ〉− the first excited state, tan θ = ∆0/∆, and energy eigenvalues

E± = ±ε/2 = ±
√

∆2
0 + ∆2/2.

Now that we have established the energies of the bare TLS, we now consider two dipole couplings

between the TLS and the strain and electric fields. Figure 1.21 depicts these couplings with some notion of

how they manifest in superconducting resonator and qubit devices. The two interaction Hamiltonians,

represented by the bidirectional arrows with color gradients, determine how energy is exchanged between

the TLS and electromagnetic fields, ĤTLS−EM, and TLS and phonons, ĤTLS−PH [66]

ĤTLS−EM = (d0 ·E) (∆σ̂z + ∆0σ̂x) /ε (1.70)

ĤTLS−PH = (γγγe · e) (∆σ̂z + ∆0σ̂x) /ε (1.71)

where d0 is the electric dipole moment of a single TLS, γγγe is the elastic dipole moment, and e is the strain

field. We direct the reader to the remainder of the derivation by Gao [66] connecting these microscopic

models for the single TLS to ensembles of TLS with ∆ and ∆0 being uniformly and log uniformly

distributed and the macroscopic discription of the dielectric function varying with applied microwave fields

and temperatures.

19We will use the notation in Gao’s thesis [66] for coefficients and the notation in [19] to label eigenstates, as the former is
more readily used in the TLS community and the latter is more intuitive from the illustration of the double well potential
in Figure 1.20.
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ω0

Figure 1.21 Coupling between microwave photons and TLS and TLS and phonons. On the far left, a
microwave tone is incident on a tapered feedline with frequency ω0 resonant the resonator on the top right
(ω). The inset shows a distribution of TLS coupled to the phonon bath by the interaction Hamiltonian
HTLS−PH, indicated by the color gradient arrow. Another bidirectional coupling is shown with the arrows
between the TLS and resonator ω0 with interaction Hamiltonian HTLS−EM. In the small image, we include
a scanning electron microscope image of a substrate surface as a representation for the substrate-air or
metal-substrate interface hosting TLS.

The result of a temperature and power-dependent dielectric function

ε(ω, T, P ) = ε′(ω, T, P )− jε′′(ω, T, P ) is a loss tangent tan δ = Im{ε} = ε′′ that is also a function of power

and temperature. In the strong or general field limit that is relevant to the experiments performed in this

thesis, the loss tangent tan δ ' δ = Q−1
i is equal to the inverse internal quality factor of a given resonance

at ω0 [17, 66, 134]

Q−1
i,TLS(ω0, T, n) = δTLS = Fδ0

TLS

tanh (h̄ω0/kBT )(
1 + 〈n〉

nc

)β (1.72)

where nc is the critical photon number equal to the photon power at the onset of TLS saturation. β is an

exponent interpolating between the non-interacting TLS model β = 1/2 and interacting TLS model

β < 1/2 [130, 135, 136], δ0
TLS is the intrinsic TLS loss, F is the geometry-dependent filling factor defined by

the ratio of electric field energy storied in the dielectric compared to the total electric field energy

Fj =

1
2εj
∫
Vj
|E|2 d3x∑

k
1
2εk
∫
Vk
|E|2 d3x

(1.73)

The filling factor here is labeled with index j to include a multi-component TLS model [17], where multiple

TLS “species” participate in the loss, each characterized by a quadruplet (βj , nc,j , Fj , δ
0
TLS,j), and the total

TLS loss being the sum δTLS,total

∑
j δTLS,j , with the j-th loss term described by (1.72).
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We have also made the substitution of power P for average number of photons in the resonator 〈n〉,

which is related to the external and total quality factors by [137]

〈n〉 =
Z0

Zr

Q2
l

Qc

2

h̄ω2
0

P (1.74)

where Z0/Zr is the impedance mismatch between the resonator Zr and the characteristic impedance of the

microwave chain Z0, assuming no other mismatches, (Z0 is typically 50 Ω), Q−1
l = Q−1

i +Q−1
c is the loaded

quality factor, Qc is the external or coupling quality factor, and P is the power applied to the resonator.

1.5.5 Losses From the Conductivity of Superconductors

Conventional superconductors follow the theory presented by Bardeen, Cooper, and Schrieffer

(BCS) [138]. Before citing the results of their theory and the subsequent work by Mattis and Bardeen [139],

it is worth reviewing the phenomenological model of superconductivity that preceded the BCS theory to

develop some intuition for the length scales involved in the Mattis-Bardeen theory. This phenomenological

model is described by the London equations [140], and captures a number of experimentally observed

properties of superconductors, including the Meissner effect, which was not predicted by competing

theories at the time that the London brothers presented their theory. Following the treatment by Gross

et al. [141], a brief review of the probability current in single particle quantum mechanics will give the

necessary ingredients to arrive at the supercurrent density at the heart of the London equations. Let’s start

from the classical equation of the motion of a charged particle moving in an electromagnetic field [141]

dp

dt
= −∇∇∇

{
qV − q

m
(p ·A) +

q2

2m
(A ·A)

}
= −∇∇∇U (1.75)

where q is the charge of the particle, V is the electric scalar potential, p is the momentum of the particle,

A is the magnetic vector potential, m is the mass of the particle, and U is the generalized potential of the

system. Taking the kinetic energy as p · p/2m, the total energy of the system can be written as

E =
1

2m
(p− qA) · (p− qA) + qV (1.76)

and making the replacement p→ −ih̄∇∇∇ in (1.76), we have the Hamiltonian of the system and Schrödinger

equation as

ĤL =
1

2m
(−ih̄∇∇∇− qA)

2
+ qV (1.77)

ih̄
∂Ψ

∂t
=

{
1

2m
(−ih̄∇∇∇− qA)

2
+ qV

}
Ψ (1.78)
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The probability ρ(x, t) of finding a particle at position x and time t is given by the square of the

wavefunction,20 ρ(x, t) = Ψ(x, t)∗Ψ(x, t) = |Ψ(x, t)|2 with the normalization condition [141]

∫
V

Ψ(x, t)∗Ψ(x, t) d3x = 1 (1.79)

The time evolution of the probability follows from multiplying (1.78) on the left by Ψ∗, taking the complex

conjugate of (1.78) and multiplying on the right by Ψ, then taking the difference of the two expressions.

This gives the time derivative of ρ = Ψ∗Ψ contructed from the two components of the product rule of

differentiation, i.e. ∂t(Ψ
∗Ψ) = Ψ∗∂tΨ + Ψ∂tΨ

∗. The result, after some differential and algebraic

manipulation, is a partial differential equation for ρ

∂ρ

∂t
= −∇∇∇ ·

{
h̄

2mi
(Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗)

}
= −∇∇∇ · Jρ (1.80)

where the right hand side is rewritten to resemble that of a continuity equation, with a probability current

density Jρ in analogy with the classical electric current density and charge density.

It is worth emphasizing that this expression applies to a single particle, whereas the supercurrent

density of superconductors involves a macroscopic number of particles. This macroscopic wavefunction is

described by a dynamical phase θ(x, t) and amplitude Ψ0(x, t), Ψ(x, t) = Ψ0(x, t)eiθ(x,t). In the

superconducting context, the square of the wavefunction corresponds to the local number density n∗s(x, t)

of superelectrons or Cooper pairs and the normalization condition is modified to account for the total

number of Cooper pairs Ns [141]

∫
V

Ψ∗(x, t)Ψ(x, t) d3x = Ns (1.81)

The continuity equation for the probability |Ψ(x, t)|2 = ns(x, t) results in a current density Js referred to

as the supercurrent that is no longer a probability current density, but one that describes the flow of

Cooper pairs in the superconductor [141]. Thus, Ψ(x, t) =
√
n∗s(x, t)e

iθ(x,t) and Js is given by [141]

Js =
q∗h̄

2m∗i
(Ψ∗∇∇∇Ψ−Ψ∇∇∇Ψ∗)− q∗ 2

2m∗
ΨΨ∗A (1.82)

where q∗ = 2e and m∗ = 2me are the charge and mass of the Cooper pairs, consisting of two paired

electrons of opposite spin and momentum.21

20This should not be confused with the density matrix or density operator ρ̂ whose diagonal entries are the probabilities of
occupying a state in a particular basis and off-diagonal elements are the coherences.

21At the level of the two-fluid theory of superconductivity discussed here, the mechanism that leads to the pairing of electrons
described by the BCS theory of superconductivity has not been introduced, nor will it be discussed in subsequent sections [138].
Later, the results of the BCS theory will be quoted when discussing the temperature dependence and frequency dependence
of the conductivity and superconducting gap described by the Mattis-Bardeen theory.
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Substituting Ψ =
√
n∗se

iθ into (1.82), gives

Js =
q∗h̄n∗s
m∗

(
∇∇∇θ − q∗

h̄
A

)
=

h̄

q∗Λ
γγγ (1.83)

Λ =
m∗

n∗sq
∗ 2

(1.84)

λL =

√
m∗

µ0n∗sq
∗ 2

(1.85)

γγγ =∇∇∇θ − q∗

h̄
A (1.86)

where Λ is the London parameter, λL is the London penetration depth and γγγ is a gauge invariant phase

gradient. This form of the gradient leaves the supercurrent density unchanged under gauge transformations

of the magnetic vector potential and phase of the form A→ A +∇∇∇χ and θ → θ + q∗/m∗χ [141].

Taking the curl of both sides of the first form of (1.83) and using the property ∇∇∇×∇∇∇θ = 0 gives the

relationship between the magnetic field B =∇∇∇×A and supercurrent density as London’s second

relation [20]

∇∇∇×A = B = −Λ (∇∇∇× Js)

⇒ Js = − 1

Λ
A, ∇ ·A = 0 (1.87)

where in the second line we applied the London gauge (∇ ·A = 0).

From Ampére’s law, the current density is related to the magnetic field by Js = µ−1
0 ∇∇∇×B and taking

the curl of this equation gives

∇∇∇× Js = − 1

Λ
B = µ−1

0 ∇∇∇×∇∇∇×B

= µ−1
0

(
∇∇∇���

�:0
(∇ ·B)−∇2B

)
⇒ ∇2B =

µ0

Λ
B =

1

λ2
L

B (1.88)

In one dimension, as drawn in Figure 1.22, the magnetic field is taken to be B = B(y)z directed out of the

page and (1.88) reduces to ∂yyB = λ−2
L B with the exponential decay solution plotted in the right hand

panel of Figure 1.22. Similarly, the exponential decay of the current density in the xy-plane, orthogonal to

the B field is drawn in Figure 1.22 (c), which can be derived from similar arguments as above, arriving at

an equation of motion for the supercurrent as ∇2Js = λ−2
L Js, from ∇ · Js = 0 and ∂tn

∗
s = 0.

The first London equation requires additional calculations, using the Schrödinger equation in (1.78)

with the charge and mass replaced by their effective counterparts (with superscripted asterisks) and taking

the number density n∗s to be constant.
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Figure 1.22 Illustration of the Meissner effect and the exponential decay of magnetic fields B electric
supercurrent densities Js from the surface of the superconductor as first described by the London
equations. This figure is based on a lecture given by de Sousa [20].

Differentiating (1.82) with respect to time and substituting Ψ =
√
n∗se

iθ(x,t) gives

∂tJs = − 1

Λ

{
∂tA−

h̄

q∗
∇∇∇∂tθ

}
(1.89)

−h̄∂tθ =
q∗ 2

2m∗

{
A− h̄

q∗
∇∇∇θ
}2

+ q∗V (1.90)

Rearranging the first term in (1.90) and substituting the expression for the gauge invariant gradient γγγ, a

relationship between ∂tθ and Js emerges

−h̄∂tθ =
h̄2

2m∗
γγγ2 =

q∗ 2

2m∗
Λ2J2

s =
1

n∗s
ΛJ2

s (1.91)

Substituting this result into (1.89) and using E = −∂tA−∇∇∇V , we arrive at the first London equation

∂tJs =
1

Λ
E−∇∇∇ 1

2n∗sq
∗J

2
s (1.92)

This is the full nonlinear expression relating the supercurrent density and the electric field. The second

term is typically small compared to the first, giving the linear relationship ∂tJs = Λ−1E, stating that

time-independent currents flow without dissipation in superconductors.

These expressions describe the local relationship between the electric field and supercurrent

density [66], but work by Pippard and Bragg [142] showed that a nonlocal relationship captures the

experimental observation of a London penetration depth that varies with the coherence length ξ of the

material, which itself is a function of the purity of the superconductor.
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The coherence length is a measure of the size of a Cooper pair in a superconductor and is combination

of a pure superconductor term ξ0 = h̄v0/π∆0, where v0 is the Fermi velocity of the metal and ∆0 is the

superconducting gap at zero temperature, and a term proportion to the electron mean free path l, i.e.

ξ−1 = ξ−1
0 + (αpl), where αp is an empirical constant of proportionality [66].

This brings us to the starting point for the Mattis-Bardeen theory of the temperature and frequency

dependence of the complex-valued conductivity of superconductors. Gao [66] gives a thorough derivation of

the Mattis-Bardeen theory [139] starting from the nonlocal supercurrent density motivated by similar

expressions for the classical (normal) current density Jn(r) that describes variations in the skin depth with

the electron mean free path l [66]

Jn(r) =
3σdc

4πl

∫
V

R (R ·E(r′)) e−R/l

R4
d3r′ (1.93)

Js(r) = − 3

4πξ0λ2
L

∫
V

R (R ·A(r′)) e−R/ξ

R4
d3r′ (1.94)

where R = r′ − r and we used London’s second equation in the London gauge (∇ ·A = 0), then substituted

the coherence length for the mean free path, analogous with the normal current expression. Mattis and

Bardeen developed a modified form of (1.94) [139]

Js,MB =
3

4π2v0h̄λ2
L0

∫
V

R (R ·A(r′)) I(ω,R, T ) e−R/l

R4
(1.95)

with the kernel I(ω,R, T ) e−R/l encoding the physics of the BCS theory of conventional superconductivity,

the form of which is given in [66]. Gao discusses several limits of expressions resulting from (1.95), namely

the surface impedance Zs = Rs + jXs, where Rs is the surface resistance, and Xs is the surface reactance

of the superconductor, which is itself related to the frequency shift and quality factor shift as a function of

temperature by [66]

δf

f
=
f(T )− f(0)

f(0)
= −α

2

δXs

Xs
= −α

2

Xs(T )−Xs(0)

Xs(0)
(1.96)

δ
1

Qi
(T ) =

1

Qi(T )
− 1

Qi(0)
= α

δRs
Xs

= α
Rs(T )−Rs(0)

Xs(0)
(1.97)

where α, also referred to as a conductive participation ratio pcond or magnetic participation ratio, is defined

by

α =
λL
∫
S
|H|2 d2x∫

V
|H|2 d3x

(1.98)
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In the superconducting bulk aluminum cavities studied in this work, the effective London penetration

depth is 50 nm < λeff < 65 nm, [50] placing them firmly in the dirty or local limit

λeff � l, ξ0, (l ≈ 19 nm [143]) with the surface impedance related to the complex conductivity σ = σ1 − iσ2

by [66]

Zs(ω, T ) =

√
iµ0ω(T )

σ1(T )− iσ2(T )
(1.99)

where the conductivities have the form referenced to the normal conductance of the material σn

by [66, 139, 144]

σ1(ω, T )

σn
=

2

h̄ω

∫ ∞
∆

(f(E)− f(E + h̄ω))(E2 + ∆2 + h̄ωE)√
E2 + ∆2

√
(E + h̄ω)2 −∆2

dE

+
1

h̄ω

∫ −∆

∆−h̄ω

(1− 2f(E + h̄ω))(E2 + ∆2 + h̄ωE)√
E2 + ∆2

√
(E + h̄ω)2 −∆2

dE (1.100)

σ2(ω, T )

σn
=

1

h̄ω

∫ ∆

max{∆−h̄ω,−∆}

(1− 2f(E + h̄ω))(E2 + ∆2 + h̄ωE)√
E2 + ∆2

√
(E + h̄ω)2 −∆2

dE (1.101)

where f(E) = (1 + exp(E/kBT ))−1 is the Fermi-Dirac distribution function and ∆ = ∆(T ) is the

superconducting gap whose temperature dependence is given by the integral expression

1

N(0)V
=

∫ h̄ωc

0

tanh

(√
ξ2+∆2

2kBT

)
√
ξ2 + ∆2

dξ (1.102)

where ωc = ωD is an upper cutoff frequency, taken to be the Debye frequency, N(0) is the number of

Cooper pairs at zero temperature, and V is the BCS interaction strength.
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Figure 1.23 Superconducting gap, normalized to the zero temperature gap ∆0 as a function of temperature,
using the interpolation formula in (1.103).
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(a) (b)

(c) (d)

Figure 1.24 Mattis Bardeen fits of temperature sweeps of an Al CPW resonator deposited on InP by W. M.
Strickland at New York University. (a) Fractional frequency shift and (b) fractional quality factor shift vs.
temperature. (c) Fractional frequency shift vs. δXs/Xs and (d) fractional quality factor vs. δRs/Xs.

There are a number of interpolation formulas that approximate the gap function in the region of

interest to experiments 0 < T < Tc/3, with the following used in this thesis and scresonators [18]

∆(T ) ≈ ∆0 tanh(
√
Tc/T − 1) (1.103)

and shown in Figure 1.23. Other software tools use similar approximation schemes, including the Supermix

package [145]

∆(T ) ≈ ∆0 exp

[
−2πkBT

∆0
e
−−∆0
kBT

]
(1.104)

Gao et al. gives asymptotic expressions for the conductivities in the limit where h̄ω � ∆, kBT � ∆, and

e−E/kBT � 1 which are valid in all experimental settings of interest in this work [146]

σ1(ω, T )

σn
=

4∆

h̄ω
e−∆/kBT sinh(ζ)K0(ζ), ζ =

h̄ω

kBT
(1.105)

σ2(ω, T )

σn
=
π∆

h̄ω

[
1− 2e−∆/kBT e−ζI0(ζ)

]
(1.106)

where I0(ζ) and K0(ζ) are 0-th order modified Bessel functions of the first and second kind,

respectively. Figure 1.24 shows example temperature sweeps fit using the approximate expressions for the

superconducting gap in (1.103) and the conductivities in (1.105) and (1.106).
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CHAPTER 2

TUNABLE CAPACITOR FOR SUPERCONDUCTING QUBITS USING AN INAS/INGAAS

HETEROSTRUCTURE

Reproduced with permission from [48] published in Quantum Science and Technologies.

Nicholas Materise,∗,22 Matthieu C. Dartiailh,23 William M. Strickland,23 Javad Shabani,23 and Eliot

Kapit22

2.1 Abstract

Adoption of fast, parametric coupling elements has improved the performance of superconducting

qubits, enabling recent demonstrations of quantum advantage in randomized sampling problems. The

development of low loss, high contrast couplers is critical for scaling up these systems. We present a

blueprint for a gate-tunable coupler realized with a two-dimensional electron gas in an InAs/InGaAs

heterostructure. Rigorous numerical simulations of the semiconductor and high frequency electromagnetic

behavior of the coupler and microwave circuitry yield an on/off ratio of more than one order of magnitude.

We give an estimate of the dielectric-limited loss from the inclusion of the coupler in a two qubit system,

with coupler coherences ranging from a few to tens of microseconds.

2.2 Introduction

Tunable couplers for superconducting qubits, previously thought of as long-term investments in future

quantum computers and building blocks towards demonstrating high fidelity two qubit gates [8, 39], are

now center-pieces of large scale superconducting qubit-based quantum computers. The early quantum

advantage demonstration [37] owes its success, in part, to the two-qubit gate fidelities across the chip

facilitated by fast, tunable couplers. Often tunable couplers are realized as mutual inductances or effective

capacitances between nearest-neighbor qubits and tuned by flux-biased superconducting quantum

interference devices (SQUIDs), naturally integrating with both fixed and flux-tunable superconducting

qubit fabrication capabilities [38].

Advancements in the growth of superconductor-semiconductor (super-semi) structures for use in

gate-tunable Josephson junctions have led to proposals [46, 147] and experimental demonstrations of

voltage-controlled coupling schemes, superconducting quantum storage units [148], and readout resonator

buses [47].

∗Primary and corresponding author, nick.materise@gmail.com
22Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 USA
23Center for Quantum Information Physics, Department of Physics, New York University, NY 10003, USA
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Unlike their conventional transmon qubit [1] counterparts, whose energies are either fixed by their shunt

capacitors or tuned with magnetic fluxes threading SQUID loops [149], these hybrid quantum systems

consist of epitaxial III-V semiconductor layers whose properties are tunable with precise composition

control and applied electric fields.

Challenges in optimizing materials and fabrication processes remain to realize high coherence

gatemon [42] qubits and other voltage-tunable super-semi devices. These gatemon qubits differ from their

flux-tunable and fixed frequency transmon counterparts in that their Josephson junctions are formed by

superconductor-semiconductor-superconductor junctions and their Josephson energies EJ are tunable by

an external electric potential. Although achieving coherences of two dimensional electron gas

(2DEG)-based gatemon qubits at parity with conventional transmon-like qubits remains an open area of

research, similar systems acting as low participation couplers still offer fast, high contrast control with a

tolerable reduction in system coherence. Recent experimental demonstrations of tunable resonators using

the same materials stack, achieved an on/off coupling ratio between resonators of one order of magnitude,

a promising first step towards realizing fast, voltage-tunable couplers [150].

We propose a voltage-controlled capacitive coupling element between neighboring superconducting

qubits using a III-V semiconductor 2DEG in an InAs/InGaAs heterostructure. The capacitance of the

coupler tunes as a function of a gate voltage or series of gate voltages applied to the 2DEG, repelling

electrons away from the region underneath the gates. By “parting the sea of electrons” in the quantum

well, the coupler straddles two limits – fully conducting and fully depleted or insulating. In the

intermediate region, the area of the depleted charges acts as an effective dielectric of some width d, and the

capacitance of the coupler decreases with increasing width, as one might expect a parallel plate capacitor

to behave as the separation between the plates increases. From this simple operational principle and

reduction in sensitivity to bias line fluctuations, we expect such a coupler to be a drop-in replacement for

SQUID-based inductive couplers [21].

Additional capacitors between the coupler and the qubits may minimize unwanted electric field

coupling to other qubits. This is an improvement over SQUID-based couplers, where stray magnetic fields

can lead to classical cross-talk between qubits [151]. We suspect that the 2DEG coupler may introduce

more charge noise than the inductive couplers through the voltage control lines, yet transmon qubits, our

initial targets for qubit-coupler integration testing, are exponentially insensitive to this charge noise.

The structure of the paper is as follows. We start by presenting a conceptual design of the coupler in

Section 2.3.1. In Section 2.3.2, we formulate rigorous numerical models of the 2DEG coupler, starting with

COMSOL semiconductor electron density calculations, followed by additional electrostatic and

frequency-domain COMSOL simulations of the capacitance and admittance matrices, respectively.
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Figure 2.1 Schematic of two transmon qubits and the 2DEG coupler. Blue regions (color online)
correspond to low electron concentration or effective dielectrics and red regions correspond to high electron
concentration or effective conductors. We use the labeling of the voltage nodes Vi throughout the text,
where nodes 1 and 2 correspond to source and drain terminals, and node 3 refers to the gate terminal.

That section concludes with a summary of the dielectric and other loss mechanisms present in the III-V

semiconductor and dielectric materials in the coupler. Section 2.5 details our ANSYS high frequency

simulation software (HFSS) simulations of a prototypical two transmon qubit circuit coupled by a lumped

element capacitor representing the 2DEG coupler. We apply energy participation ratio techniques [103] to

extract the Hamiltonian matrix elements in the dispersive regime, and extend these calculations to

compute the charge-charge interaction matrix elements between the two transmon qubits. These analyses

give similar results when considering a single lumped element variable capacitor representing the coupler

compared to a full parasitic capacitance model of the coupler from our electrostatic COMSOL simulations.

2.3 Methods and Modeling

2.3.1 Conceptual Design

Inspired by textbook parallel plate capacitors, our coupler design relies on electronic control of the

carrier concentration between two contacts to modify the effective parallel plate capacitor geometry seen

by neighboring qubits. We consider a proximitized semiconductor [152] sandwiched between two

transmon-like qubits with large capacitor plates patterned on top and a metal-oxide gate separating the

two plates. Applying a negative gate voltage decreases the carrier concentration directly below the gate,

modifying the capacitor geometry by increasing the effective separation of the parallel plates. The high

electron mobility of the carriers in the 2DEG, exceeding 14 000 cm2V-1s-1 at 20 mK, [23] allows for fast

gating, enabling parametric interactions with rapidly oscillating gate voltages.

This concept generalizes to multiple gates, where each region of low electron concentration corresponds

to an effective dielectric and each region with high electron concentration acts a conductor.
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The effective capacitance seen by the two qubits is the series combination of the individual capacitances

defined by alternating effective dielectrics and conductors. Similar gating schemes have been proposed for

nonreciprocal devices [153], tunable quantum buses [47], and controlled-Z gates [46].

Apart from the aforementioned experimental demonstrations of these devices, few modeling efforts, if

any, have explored the practical considerations of realizing such couplers. The following numerical

simulations aim to address those concerns by estimating the capacitive tuning range in the presence and

absence of parasitic capacitances, calculating relevant interaction matrix elements, and providing an upper

bound on the losses inherited by the system from the dielectric materials of the coupler.

2.3.2 Classical Modeling

2.3.3 Semiconductor 2DEG Calculations

To estimate the capacitance of the 2DEG coupler, we compute the electron concentrations in the active

region of the device (InGaAs/InAs/InGaAs layers) using the COMSOL Multiphysics Semiconductor

Module [154]. Equilibrium solutions to the drift-diffusion equations with Fermi-Dirac statistics serve to

identify regions of high depletion under the gate(s) when applying negative voltages on the order of a few

volts, overcoming the work function of the aluminum gate contact.

We use a layer structure typical of gatemon qubits as in figure Figure 2.2 and refer to this structure as

the “device stack” [22–24, 155]. To model the device stack in COMSOL, we specified the following

electronic properties of the semiconductor materials and the dielectric constant of the gate oxide: electron

and hole effective conduction band masses m∗n(p),c, low-field mobilities µlf
n(p), band gap energies Eg,

conduction band offsets ∆Ec between neighboring semiconductors, dielectric constants εr, and effective

densities of states for the conduction and valence bands N c(v). Taking the electron affinity χ for InAs as

given by the COMSOL material library, we calculated the remaining affinities using Anderson’s affinity

rule and the conduction band offsets of each material [156]. As in reference [155], we included a silicon

delta-doping 6 nm below the interface between the InAlAs and lower InGasAs layers. COMSOL

approximates such a doping profile with the Geometry Doping profile, which we select a Gaussian profile

with a width of 0.1 nm. Table Table 2.1 gives a summary of the material parameters used in these

semiconductor simulations; see A for detailed calculations of the energy gaps, effective masses, and

conduction band offsets for InxGa1-xAs and InxAl1-xAs as functions of the composition parameter (x).

We specify the geometry in Figure 2.2 using the native COMSOL CAD editor to define domains

(surfaces or planes) and boundaries (lines or edges), solving for the electron density in the domains and on

the boundaries. Electronic properties assigned to each domain follow from table Table 2.1.
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Figure 2.2 Schematic of the 2DEG coupler as modeled in COMSOL Multiphysics based on [21]. An
aluminum contact deposited on AlxOy defines the gate terminal. We abbreviate the fixed composition
ternary III-V alloys In0.81Ga0.19As and In0.81Al0.19As, as InGaAs and InAlAs, respectively. Not shown or
modeled is the superlattice graded buffer layer between InP and InAlAs [22–24].

Table 2.1 Materials parameters used in the COMSOL Semiconductor Module calculations. InGaAs and
InAlAs abbreviate In0.81Ga0.19As and In0.81Al0.19As. m0 corresponds to the rest mass of an electron (0.511
MeV c−2). Out-of-plane effective electron and hole masses of InAs are set to m0 in the model to simulate
2DEG confinement in the xy-plane. Electron mobilities for InAs, InGaAs, and InAlAs are all set to the
same value as extracted from measurements of a similar device at millikelvin temperatures [23]. Values not
in parenthesis (in parenthesis) correspond to electron (hole) properties.

InAs InGaAs InAlAs InP
Eg [eV] 0.354 0.473 0.752 1.344

∆Ec [eV] - 0.200 0.201 0.12
εr 15.15 14.03 13.13 12.9
N c [cm-3] 6.6E18 1.4E17 2.1E17
Nv [cm-3] 8.73E16 6.4E18 7.8E18
χ [eV] 4.9 4.7 4.5 4.38
µlf

n(p) [cm2V-1s-1] 14.4E3 (500) 14.4E3 (450) 14.E3 (384) 5.4E3 (200)

m∗n(p),c [m0] 0.023 (1.00) 0.03 (0.25) 0.04 (0.31) 0.08 (0.60)

We model the terminals (source – 1, drain – 2, gate – 3, as in Figure 2.1) as Terminal boundary conditions

with voltages V1, V2, V3 and contact work functions Φc,1, Φc,2, Φc,3 = 4 V [154].

We selected the density gradient discretization scheme [157] in COMSOL to approximate the quantum

confinement effects in the 2DEG more efficiently than a self-consistent Schrödinger-Poisson equation

calculation.
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The density gradients modify the equilibrium electron (n) and hole (p) concentrations by [154]

n = N cF1/2

(
Efn − Ec + qV DG

n

kBT

)
(2.1)

p = NvF1/2

(
Ev − Efp + qV DG

p

kBT

)
(2.2)

Nc(v) =

(
2m∗n(p)πkBT

h2

)3/2

(2.3)

where Ec(v) is a given material’s conduction (valence) band edge, Efn(p) are the electron (hole) quasi-Fermi

level energies, F1/2(η) is the Fermi-Dirac integral [158], kB is Boltzmann’s constant, T is the temperature

of the device (approximate temperature of the mixing chamber stage of typical dilution refrigerators ∼10

mK), and q is the charge of an electron or hole. The quantum potentials V DG
n(p) are defined in terms of the

density gradients by [154]

∇ ·
(
bn∇∇∇
√
n
)

=
1

2

√
n V DG

n (2.4)

∇ · (bp∇∇∇
√
p) =

1

2

√
p V DG

p (2.5)

with the density gradient tensors bn(p) for electrons (holes) expressed in terms of the effective mass tensors

m∗n(p)

bn =
h̄2

12q
[m∗n]

−1
(2.6)

bp =
h̄2

12q

[
m∗p
]−1

(2.7)

Note the distinction between the scalar effective masses m∗n(p) and, the effective mass tensors m∗n(p).

Anisotropy in the effective mass tensors emulates the quantum confinement effects in the 2DEG,

constraining electron movement to one plane.

For the remaining materials, Al2O3 and air, we used the Electric Charge Conservation interface,

including the following constitutive relations for each dielectric in terms of its electric permittivity tensor

εεε [154]

D = ε0εεε : E (2.8)

where D is the electric displacement field, ε0 is the permittivity of free space, E is the electric field, and

εεε : E is a tensor contraction (matrix vector product) between εεε and E.
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Modeling these regions as pure dielectrics reduces the size of the system of equations relative to a

drift-diffusion calculation applied to the materials that behave as perfect insulators, air and oxide layers.

We excluded the superlattice graded buffer between the InAlAs and InP, as we expect the electric fields

and carrier concentrations to be negligible in those regions and the additional computational cost (number

of degrees of freedom solved for in the COMSOL model) would not improve the accuracy of our estimates

of the capacitances and conductances of the coupler that will be largely determined by the charge

dynamics in and near the active region (InGaAs/InAs/InGaAs).

Figure 2.3 Electron concentrations [cm-3] on a base-10 logarithmic scale with source-drain bias Vsd = 0 V
for the fully conducting Vg = 0 V, intermediate Vg = −0.5, −1, −2, −4 V, and fully depleted Vg = −5 V
operating points. The horizontal axis is a 300 nm span centered on the gate electrode and the vertical axis
starts at the contact–2DEG interface at ∼117 nm, the 2DEG–InAlAs interface is 18 nm below that, and
the InAlAs–InP interface is located at 0 nm. We do not solve for n in the regions where we applied the
Electric Charge Conservation equations, i.e. in the AlxOy regions not shown, yet the electric fields respect
the boundary conditions set by those regions.
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2.3.4 Electric Currents Admittance Matrix Calculations

To extract the conductance matrix and verify the capacitance matrix of the device under high

frequency excitation agrees with the electrostatic result, we use the Harmonic Perturbation option in the

COMSOL Semiconductor module to compute the admittance matrix Y defined in terms of the N terminal

voltages Vk and currents Ik [159]


I1
I2
...
IN

 =


Y11 Y12 . . . Y1N

Y21 Y22 . . . Y2N

...
...

...
YN1 YN2 . . . YNN



V1

V2

...
VN

 (2.9)

In the frequency domain, the voltages and currents become phasors of the form Ṽke
iωt and Ĩke

iωt, with the

admittance matrix given by

Y = G + iωC, (2.10)

where G and C are the conductance and capacitance matrices, i =
√
−1, and ω is the angular

frequency [159]. Both matrices are nearly symmetric for our nonlinear, three-terminal device in

figure Figure 2.1.

The Harmonic Perturbation option applies a small AC signal with angular frequency ω to each terminal

after a DC operating point has been calculated by the semiconductor solver with some voltage applied to

the gate, source, and drain contacts. At each DC operating point (linearization point), COMSOL computes

the currents and voltages by differentiating the perturbed solution. To compute the admittance matrix

above, we compute the ratio of the current and voltage at each terminal, i.e. [154]

Yij =
Ii
Vj

∣∣∣∣
Vk 6=j=0

(2.11)

We compute these currents at each terminal, given voltage source excitations, as a function of frequency ω

in the band of 4–8 GHz relevant to superconducting qubit and resonator frequencies, and extracted the

conductance matrix as the real, frequency-independent part of Y and the capacitance matrix as the

derivative of the imaginary part of Y from (2.10)

Gij = Re{Yij(ω)} (2.12)

Cij = Im

{
dYij(ω)

dω

}
(2.13)
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dYij(ω)/dω is a constant in our case, as we omit the junction inductance LJ0 leading to discontinuities

at resonance frequencies proportional to (CijLJ0
)−1/2 [95]. The capacitance and conductance matrices in

the fully conducting limit Cc and Gc read

Cc[fF] =

 13.2 −13.0 −0.17
−13.0 13.2 −0.17
−0.17 −0.17 0.34

 (2.14)

Gc[µS] =

 23.3 −23.3 −6.38E−4
−23.3 23.3 −6.38E−4
−6.38E−4 −6.38E−4 1.28E−3

 (2.15)

(2.16)

Similarly, in the fully depleted limit we have

Cd[fF] =

 15.5 −0.32 −0.16
−0.32 15.5 −0.16
−0.06 −0.06 0.33

 (2.17)

Gd[µS] =

 38.3 0.532 −3.09E−4
0.532 38.3 −3.09E−4

7.74E−3 7.74E−3 6.49E−4

 (2.18)

We include the resistance matrices Rc(d) = G−1
c(d), for later use in Section 2.5 where we perform coupled

two qubit simulations with HFSS and reference the Rc(d),12 matrix elements in the lumped element

representation of the coupler.

Rc[Ω× 109] =

93.3 93.3 93.3
93.3 93.3 93.3
93.3 93.3 94.1

 (2.19)

Rd [Ω] =

 2.61E+4 −3.65E+2 1.23E+4
−3.65E+2 2.61E+4 1.23E+4
−3.07E+5 −3.07E+5 1.54E+9

 (2.20)

Note that the capacitance, conductance, and resistance matrices away from the fully conducting operating

point are not symmetric. The departure of the capacitance matrices from symmetry likely stems from

numerical imprecision. The conductance discrepancies we attribute to the observed frequency dependence

of the real part of Y. In the symmetric setting, we expect Re{Y(ω)} to be constant with respect to ω, but

we find that it varies linearly with ω. This frequency dependence we model as Re{Y(ω)} = ωg and report

G = g∆ω, where g has units of Ω−1 s and ∆ω is the frequency step used by the Harmonic Perturbation

study.

The matrix elements of interest, C12 = C21, G12 = G21, andR12 = R21 represent the effective

capacitance, conductance, and resistance between the source and drain terminals.
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These terminals form capacitive contacts with any pair of qubits. The capacitance tuning ratio r, or

on/off contrast of the 2DEG coupler is given by rC = Cc,12 / Cd,12 ≈ 40. Similarly, the ratio of

conductances is rG = Gc,12 / Gd,12 ≈ 43. A back of the envelope calculation of the charge concentration in

the 2DEG between the source and drain contacts, using expressions for the conductivity σ = µn e n and

conductance G12/d0 = σ gives

nc,eff =
Gc,12

µne d0
= 2.0E+17 cm−3 (2.21)

nd,eff =
Gd,12

µne d0
= 4.6E+15 cm−3 (2.22)

These effective charge concentrations agree with figure Figure 2.3 and link the change in capacitance and

conductance with a change in carrier concentration between the source and drain contacts.

2.4 Results

Summary of the modeling results of the 2DEG tunable coupler.

We report the gate voltage dependence of the capacitance and conductance matrices computed in the

previous section at intermediate DC operating points between the fully conducting (Vg = 0 V) and fully

depleted (Vg = −5 V) limits. Figure Figure 2.4 shows that the source-drain capacitance C12 = C21

saturates quickly, as Vg < −1 V. This is a desired feature for practical tunable couplers, as lower operating

voltages are preferred to reduce the active heat load from DC control signals [160]. The conductances

G12 = G21 follow a similar trend, with the other matrix elements following a different Vg–dependence than

the capacitance matrix elements.

(a) (b)

Figure 2.4 (a) Maxwell capacitance and (b) conductance matrices as computed with the Harmonic
Perturbation study of the COMSOL Semiconductor Interface as a function of the gate voltage Vg.
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2.4.1 Coupler Loss Estimates

We give bounds on the losses introduced by the 2DEG coupler from experimental measurements of the

high participating gate dielectrics and InGaAs upper layer, along with the other layers in the device stack.

In table Table 2.2, we compute the electric field participation ratios pj following the procedure developed

by [161, 162]. The relaxation time T1 at a given angular frequency ω, as a function of the dielectric

material properties and geometric factors, reads [162]

T−1
1 =

ω

Q
= ω

∑
j

pj
Qj

+ Γ0 (2.23)

Q−1
j = tan δj (2.24)

pj = W−1
e toxideε1,j

∫
Sj

|E|2 dS (2.25)

We =

∫
V

|E|2dV (2.26)

We is the electric field energy density stored in the volume of the entire geometry V , Qj are the quality

factors, tan δj are the loss tangents, ε1,j are the real parts of the dielectric function, and toxide is the

thickness of the participating lossy surface, assumed to be 3 nm for all materials [162]. The participation

ratios give the fraction of the electrical energy stored in a given surface Sj relative to the total electrical

energy stored in the entire volume of the device. The last term in (2.23), Γ0, includes all other loss

mechanisms contributing to T1 besides dielectric loss [162]. Note, these participation ratios differ from

those in subsequent calculations involving energy participation ratios referenced to a given mode rather

than a particular surface.

Other sources of loss relevant to III-V semiconductor materials, but not considered in this study,

include piezoelectricity [163], non-equilibrium quasiparticles [164], cosmic ray muon flux [165], and, to a

lesser extent, stray magnetic fields [166].

2.5 Integration with Circuit QED

2.5.1 Two Qubit Coupler

In figure Figure 2.5 we have a microwave circuit model of two transmon qubits coupled by a lumped

impedance ZJJc
(ω) = 1/ (1/R+ iωC), where R and C take the values of R12 and C12 in either the fully

conducting or fully depleted limits of the 2DEG coupler. In the conducting limit, where some current can

flow across the coupler and act like a Josephson junction, one might consider adding an inductance to the

coupler lumped element model.
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Table 2.2 Participation ratios pj , dielectric loss tangents tan δj , layer thicknesses tj , and estimated
dielectric-loss-limited T1,j . All T1,j times are referenced to a qubit frequency of ω/2π = 5 GHz and tan δ∗j
indicates that in the absence of reliable loss tangent data for the individual InAs, InGaAs, InAlAs, and InP
layers, we used the low power loss extracted from measurements of an Al patterned CPW resonator on the
full III-V stack modeled in this work and measured at 100 mK as an estimate [28].

Depleted tj [nm] pj,norm tan δ∗j T1 [µs]

InGaAs (Top) 10 4.19E-2 4.1E-4 1.85E+0
InAs 4 1.03E-2 4.1E-4 7.53E+0
InGaAs (Bottom) 4 7.85E-3 4.1E-4 9.89E+0
InAlAs 100 2.92E-2 4.1E-4 2.67E+0
Al2O3 [167] 50 9.04E-1 5E-3 6.87E-3
InP 3.5E3 6.97E-3 4.1E-4 8.95E+0
Total - 1 7.3E-3 6.81E-3
Conducting tj [nm] pj,norm tan δ∗j T1 [µs]

InGaAs (Top) 10 1.01E-8 4.1E-4 7.69E+6
InAs 4 3.73E-9 4.1E-4 2.08E+7
InGaAs (Bottom) 4 4.03E-9 4.1E-4 1.93E+7
InAlAs 100 1.10E-9 4.1E-4 7.06E+7
Al2O3 [167] 50 9.9999E-1 5E-3 6.24E-3
InP 3.5E3 1.41E-5 4.1E-4 4.43E+3
Total - 1 7.3E-3 6.24E-1

Taking R12 to be the normal resistance of a Josephson junction and computing the junction inductance

with the Ambegaokar-Baratoff formula [168], the junction inductances would be very small, on the order of

a few aH to tens of fH, resulting in high coupler mode frequencies, far outside of the frequency band of the

finite element electromagnetic field solver, Ansys HFSS. For this reason and expected small modifications

to qubit-qubit interactions, we omit these inductances in our model and use Ansys HFSS to compute the

lowest electromagnetic eigenmodes of the device with the two transmon qubits, indexed by j, defined as

parallel LC lumped elements, ZJJq,j = 1/ (1/(iωLq,j) + iωCq,j) . In the following section, we use these

eigenmode solutions to estimate the Hamiltonian matrix elements corresponding to qubit-qubit mode and

qubit-coupler mode coupling strengths. We will differentiate between this modal coupling from direct

capacitive coupling in the final part of this section, where we calculate the direct charge-charge interaction

matrix elements.

2.5.2 Energy Participation Ratios and Quantization

To extract the coupling matrix elements between the qubits in our microwave device layout, we employ

the energy participation ratio (EPR) method developed by Minev [169]. This approach goes beyond the

larger family of black box quantization methods [90, 95], where the Hamiltonian describes a collection of

Josephson junction-based qubits interacting with any number of harmonic modes separates into linear and

nonlinear terms.
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Figure 2.5 False color geometry of two transmon qubits with the capacitive coupler in between used in the
HFSS simulations. Lumped impedances defined in the gold regions of the insets, represent the linear
response of the Josephson junctions and capacitive coupling element in the HFSS model.

One can relate the modal decomposition of the classical electromagnetic response, e.g. impedance,

admittance, or electromagnetic energies, with the linear parts of the Hamiltonian. Additional inputs

describing the Josephson junction energy scales, EJ and EC, related to the inductive and capacitive

energies of the junction, account for the nonlinear terms. The total Hamiltonian, accounting for M modes,

in the dispersive regime and under the rotating wave approximation, reads

H = Hlin +Hnl (2.27)

Hlin/h̄ =

M∑
m=1

ωma
†
mam (2.28)

Hnl/h̄ = −
M∑
m=1

(
∆ma

†
mam +

1

2
αma

† 2
m a2

m

)
+

1

2

∑
m6=n

χmna
†
mama

†
nan (2.29)

where the Lamb shifts ∆m, cross-Kerr coefficients χmn, and anharmonicities αm are given by [169]

∆m =
1

2

M∑
n=1

χmn (2.30)

χmn = −
∑
j∈J

1

2

h̄ωmωn
4EJj

(2.31)

αm =
1

2
χmm (2.32)
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The cross- and self-Kerr (anharmonicities) coefficients extracted with the pyEPR Python

package [103, 169] are given by the entries of the χχχc(d) matrix in the conducting (c) and depleted (d) limits

of the coupler

1

2π
χχχc [MHz] =

(
223 67.1
67.1 223

)
(2.33)

1

2π
χχχd [MHz] =

(
129 1.02
1.02 129

)
(2.34)

The rows and columns of χχχc(d) correspond to qubits 1 and 2. Note that the diagonal entries include the 1/2

factor in the definition of the anharmonicities as in (2.32). The eigenfrequencies and quality factors are

recorded in table Table 2.3 and follow from the HFSS eigenmode solutions.

Table 2.3 Eigenmode frequenices and quality factors computed with HFSS in the conducting (c) and
depleted (d) limit of the coupler.

Qubit Index ω/2π [GHz] Q
1 (d) 6.0228 1.7E7
2 (d) 8.6135 5.1E9
1 (c) 6.0228 4.5E8
2 (c) 8.6135 1.3E9

(a)

(b)

Figure 2.6 Electric field magnitude (dB scale to enhance color contrast) for the first two eigenmode
solutions computed with HFSS. (a) 6.0228 GHz and (b) 8.6135 GHz qubits in the fully depleted limit of
the coupler.
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2.5.3 Extraction of the Exchange Interaction

To compute the charge-charge interaction strength between the transmon qubits in our HFSS model,

we consider the capacitance matrix associated with a persistent current or flux qubit following the

derivation by Orlando [170]. For details on the derivation of the capacitance matrix, see A.2. The

Hamiltonian for the coupled two transmons, written in terms of the Josephson junction phases ϕj and

node charges qj , is given by

H =
1

2
QTC−1Q + U(ϕ) (2.35)

U(ϕ) =
∑
j

EJj (1− cosϕj) (2.36)

C =

(
C1 + C3 −C3

−C3 C2 + C3

)
(2.37)

In (2.35), the charge-charge matrix elements are one half the entries of the inverse of the capacitance

matrix. We numerically inverted C in (2.37) using values for C1, C2 obtained from (A.19) and

C3 = C12(Vg) in the depleting and conducting limits. This matrix 1
2e

2C−1
c(d) is given by

1

2
e2C−1

c [MHz] =

(
179 21.3
21.3 179

)
(2.38)

1

2
e2C−1

d [MHz] =

(
200 0.66
0.66 200

)
(2.39)

The ratio of the off diagonal elements in (2.38) and (2.39) recovers an on/off interaction ratio of more than

one order of magnitude, rint ≈ 32.

We emphasize here that the off-diagonal charge-charge interaction matrix elements give a more accurate

description of the coupling between the qubits mediated by the 2DEG coupler than the EPR calculations

of the cross-Kerr coefficients.

A more detailed treatment of the coupler including the parasitic capacitances from the Maxwell

capacitance matrices in (2.14) and (2.17) give three-by-three coupling capacitance matrices in the

Lagrangian of the form in (A.24). The modified charge-charge interaction matrix elements in the full

parasitic capacitance model is given by

1

2
e2C−1

c,para[MHz] =

159 16.9 44.1
16.9 108 44.1
44.1 44.1 2.86E+4

 (2.40)

1

2
e2C−1

d,para[MHz] =

 172 0.552 43.0
0.552 113 43.0
43.0 43.0 2.99E+4

 (2.41)
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(a) (b)

(c)

Figure 2.7 Coupling matrix elements in (a) the simplified two node model, (b) the three node parasitic
capacitance model, (c) direct comparison of the 1-2 matrix element representing the charge-charge
exchange rate between qubits 1 and 2 with the parasitic (para) and simplified (simp) capacitance matrices.

In the parasitic capacitance model, we find an on/off interaction ratio of rint ≈ 31. Figure Figure 2.7

illustrates the excellent agreement between the simplified and parasitic capacitances as a function of the

gate voltage. Although the simplified model does not account for the parasitic capacitances

C13, C31, C23, andC32, it captures the behavior of the charge-charge exchange matrix elements accurately,

as the parasitic contributions do not significantly change the values of C−1
12 .

2.5.4 Estimation of Coupler Coherence Limit

To estimate the total coherence limit of our coupler in the two qubit device in figure Figure 2.6, a

back-of-the-envelope calculation of the energy stored in the coupler surface, in either qubit mode, gives an

electric field participation ratio on the order of 10-3, resulting in a coherence limit of a few to tens of µs,

when considering the loss to be dominated by the gate dielectric and the top InGaAs layer.
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This is consistent with previous studies of transmon qubits whose participations are near unity in their

given mode [95, 103] and gives us further confidence that a coupler of a similar geometry could support fast

parametric operations with moderate coherence.

2.6 Discussion

From our COMSOL simulations of the 2DEG semiconductor physics, electrostatic and electric current

analyses, we modeled a tunable capacitor with an order of magnitude on/off contrast. The numerical

results agree with the schematic picture of modulating a parallel plate geometry by gating a high mobility

2DEG. At the level of estimating the lumped capacitance and resistance inputs to HFSS, our models

incorporate 2D semiconductor behavior in greater detail than previous mixed experimental/computational

reports [21, 23].

Two models of the coupler, with and without the parasitic capacitances extracted from COMSOL, give

similar on/off interaction ratios and absolute interaction strengths. By simulating the full capacitance

matrix of the multi-terminal coupler device, we motivating the choice of single gate over multi-gate coupler

designs [171]. Both the simplified and parasitic capacitance estimates of the interaction strengths fall

between hundreds of kHz to tens of MHz of coupling, on the same order of magnitude as flux-tunable

couplers [37, 151].

Our coherence estimates further emphasize that incorporating our coupler design with existing

transmon qubit designs comes at a modest reduction in system coherence. With coupler coherences

limiting the system coherence to tens of µs and expected improvements in the base coherences of the

coupler materials, we are optimistic that future couplers using a similar operational principle as 2DEG

coupler may incur a lower system coherence penalty with the same low participation as modeled here.

This work has implications in the quantum annealing context, where both inductive and capacitive

coupling may lead to nonstoquastic Hamiltonians, those that cannot be simulated by quantum Monte

Carlo techniques due to the sign problem [108]. By coupling conjugate degrees of freedom, charge and flux,

gate-based superconducting qubit systems also stand to benefit from a richer native gate set, e.g. XX, YY,

and ZZ [172, 173].

2.7 Conclusion

We simulated a 2DEG-based, voltage-controlled tunable coupler compatible with superconducting

qubits. With an estimated tuning ratio of one order of magnitude and similarly reduced conductance in the

off state, our proposed design is an excellent candidate for capacitively coupling superconducting qubits.
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HFSS simulations and subsequent capacitance matrix inversion analysis suggest that the coupling

matrix elements exhibit the same range of tunability, and estimates of the loss suggest that the gate oxides

limit the lifetime of the coupler to nearly ten µs and the top InGaAs layer limits coupler lifetimes to

several tens of µs. Low loss gate dielectrics such as tantalum oxide [174] and hexagonal boron nitride [175],

along with improvements in the fabrication of the III-V stack may increase these coherence limits in the

near term. Subsequent design iterations may look to reduce the parasitic capacitances with geometric

optimization techniques to maximize contrast and minimize stray interactions [6]. A tunable capacitive

element may also serve a complementary role with tunable inductive elements to realize nonstoquastic

Hamiltonians in quantum annealing systems [108]. Our tuning and coherence estimates, coupled with the

benefit of exponential suppression of charge noise over first order sensitivity flux noise in SQUID-based

couplers, give us confidence that voltage-controlled coupling elements of the form developed here have the

potential to supplant and complement their inductive counterparts in superconducting qubit systems.
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CHAPTER 3

FIELD OVERLAP INTEGRAL APPROACH TO ESTIMATE PARAMETRIC RATES BETWEEN

SUPERCONDUCTING 3D CAVITIES

Superconducting circuits and cavities are on the cusp of achieving both the coherence and control

needed to implement error correction schemes with biased error noise models, which have shown favorable

scaling and improved error thresholds over the surface code and other systems with unbiased noise

models [113]. The realization of high fidelity parametric operations with tunable couplers has accelerated

this development, especially with the advent of parametrically activated beam splitters [9, 16]. In designing

these 3D tunable couplers, full-wave electromagnetic simulations are necessary to predict their performance

using the methods of black-box quantization (BBQ) and the energy participation ratio (EPR) approach.

These methods typically give a reasonable estimate of parametric coupling rates and bare, geometric

coupling rates in the degenerate coupled mode case when the nonlinear element that is used to induce

parametric operations is capacitively coupled to a cavity mode or collection of modes. The general problem

of estimating the bare and parametric coupling rates for capacitively coupled, inductively coupled, and

galvanically coupled nonlinear elements in the nondegenerate case requires a new modeling framework. We

present such a framework using a generalization of EPR, where the parametric rates are functions of field

overlap integrals evaluated at different mode numbers and control parameters.

3.1 Methods

The starting point for our analysis is the assumption that the electric and magnetic field eigenmode

solutions from Ansys HFSS each form a complete orthonormal basis. A derivation of the finite element

problem solved by HFSS in Appendix C gives a sketch of a proof that the electric fields are orthogonal and

the magnetic fields are likely orthogonal, but their normalization is not accessible at the user level, i.e. the

values of the eigenvectors in the eigenvalue problem resulting from the weak form of the Helmholtz

equation, subject to boundary conditions, are not exposed to users. However, the electric and magnetic

field solutions are available at the user level and we will use them as a basis functions to expand the

electric and magnetic field operators.
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3.1.1 Field Overlap Integral Formalism

We write the classical Hamiltonian as the total energy stored in the electric and magnetic fields in the

volume V including all vacuum and dielectric regions of the device.

H =
1

2
ε

∫
V

E(x) ·E(x) d3x +
1

2
µ

∫
V

H(x) ·H(x) d3x (3.1)

Then, we expand the electric and magnetic fields in terms of the eigenmode fields {Ek, Hk} which are

solutions to the Helmholtz equation at particular wavenumbers k subject to boundary conditions applied

to the modeled structure, e.g. perfect electric conductor boundary conditions on the surfaces of all vacuum

regions and vacuum impedance boundary conditions24 where appropriate. These solutions are the output

of an eigenmode solution type simulation performed with the Ansys HFSS finite element method software.

The expansion coefficients {qk, φk} are suggestive of dimensionless charge and flux operators25

E(x) =
∑
k

qkEk(x) =
∑
k

q̃kẼk(x) (3.2)

H(x) =
∑
k

φkHk(x) =
∑
k

φ̃kH̃k(x) (3.3)

where the tilde functions denote solutions evaluated at a particular static parameter value, e.g. LJ = LJ0 ,

referring to dc flux bias applied to a dc-SQUID with an effective inductance LJ0
. Substituting these

expansions into the Hamiltonian in (3.1) gives

H =
1

2

∑
kk′

[
εqkqk′

∫
V

Ek(x) ·Ek′(x) d3x + µφkφk′

∫
V

Hk(x) ·Hk′(x) d3x

]
=
∑
k

(
q2
k EEk + φ2

k EHk
)

(3.4)

In the second line of (3.4) we used the orthogonality of the electric field eigenfunctions, and recognize the

terms in the integrals are equivalent to the magnetic field and electric field energies EEk , EHk

EEk =
1

2
ε

∫
V

Ek(x) ·Ek(x) d3x (3.5)

EHk =
1

2
ε

∫
V

Hk(x) ·Hk(x) d3x (3.6)

We recall that these are the energies used to compute the participations in the energy participation ratio

approach [103].

24Here, a vacuum impedance boundary condition refers to an impedance boundary condition, described in Appendix C with
an impedance Z =

√
µ0/ε0 ≈ 337 Ω.

25We do not use hats to denote operators here in anticipation of the tilde notation used below to differentiate between LJ and
LJ0 operators. The charge and flux operators do not have the corresponding zero fluctuation prefactors to lump all units
into the eigenmode fields exported from HFSS.
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The following derivation will show that these energies will be scaled by the field overlap integrals.

Before arriving at scaled field energy result, we would like to express the Hamiltonian in terms of the field

eigenfunctions and operators evaluated at LJ = LJ0
. We relate the fields Ek to Ẽk by

Ẽk(x) =
∑
k′′

AEkk′′Ek′′(x) (3.7)

and multiplying both sides by Ek′ then integrating over the volume V gives

∑
k′′

AEkk′′

∫
V

Ek′(x) ·Ek′′(x) d3x =

∫
V

Ek′(x) · Ẽk(x) d3x (3.8)

Using the orthogonality of the electric field eigenfunctions, we can write the coefficients AEkk′ in terms of an

overlap term and an electric field energy contribution

AEkk′

∫
V

Ek′(x) ·Ek′(x) d3x =

∫
V

Ek′(x) · Ẽk(x) d3x

⇒ AEkk′ =
2

εEEk′

∫
V

Ek′(x) · Ẽk(x) d3x (3.9)

Similarly, the magnetic eigenmode fields are related by

H̃k(x) =
∑
k′′

AHkk′′Hk′′(x) (3.10)

with the form of the expansion coefficients AHkk′ given by

AHkk′ =
2

µEHk′

∫
V

Hk′(x) · H̃k d3x (3.11)

The matrices AE and AH are generalizations of the electric and magnetic field participation ratios defined

in [103], evaluated at different mode number and junction inductance (or any control parameter in

general). We will refer to these matrices as field overlap integrals or FOIs for short.

Next, we use the linear transformations connecting the electric and magnetic fields at LJ and LJ0
to

relate the charges and fluxes at different inductances. Dropping the explicit x-dependence of the fields, we

have

E =
∑
k′

Ẽk′ q̃k′ =
∑
k′

[∑
k

AEk′kEk

]
q̃k′ =

∑
k

[∑
k′

AEk′kq̃k′

]
Ek =

∑
k

qkEk

⇒ qk =
∑
k′

AEk′kq̃k′ (3.12)
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Similarly, the fluxes are related by φk =
∑
k′ A

H
k′kφ̃k′ . Substituting these expressions into the

Hamiltonian in (3.1) gives

H =
∑
k

{
EEk
∑
k′k′′

AEk′kA
E
k′′kq̃k′ q̃k′′ + EHk

∑
k′k′′

AHk′kA
H
k′′kφ̃k′ φ̃k′′

}
(3.13)

Exchanging indices in (3.13) we identify frequency terms associated with the electric and magnetic fields,

ΩEkk′ , ΩHkk′ as the bracketed terms, up to a factor of h̄, in the first line below

H =
∑
kk′

{[∑
k′′

EEk′′AEkk′′AEk′k′′

]
q̃kq̃k′ +

[∑
k′′

EHk′′AHkk′′AHk′k′′

]
φ̃kφ̃k′

}
=
∑
kk′

{
h̄ΩEkk′ q̃kq̃k′ + h̄ΩHkk′ φ̃kφ̃k′

}
(3.14)

Now we make the replacements q̃k = −i
(
ãk − ã†k

)
and φ̃k =

(
ãk + ã†k

)
, with [ãk, ãk′ ] = δkk′ and we arrive

at the beam splitter, single mode, and two mode squeezing Hamiltonian

H/h̄ =
∑
kk′

[
ΩHkk′

(
ãk + ã†k

)(
ãk′ + ã†k′

)
− ΩEkk′

(
ãk − ã†k

)(
ãk′ − ã†k′

)]
(3.15)

=
∑
k

[
2ω̃k

(
ã†kãk + 1/2

)
+ gSMS,k

(
ã2
k + ã†2k

)]
+
∑
k 6=k′

[
gBS,kk′

(
ã†kãk′ + ãkã

†
k′

)
+ gTMS,kk′

(
ã†kã
†
k′ + ãkãk′

)]
(3.16)

where the frequencies ω̃k, single mode squeezing gSMS,k, two mode squeezing gTMS,kk′ , and beam splitter

rates gTMS,kk′ are given by

ω̃k = ΩHkk + ΩEkk (3.17)

gSMS,k = ΩHkk − ΩEkk (3.18)

gTMS,kk′ = ΩHkk′ − ΩEkk′ (3.19)

gBS,kk′ = ΩHkk′ + ΩEkk′ (3.20)

From these expressions, we see that beam splitter interactions are possible when the total energy is equally

or unequally divided among the electric and magnetic field energies, whereas the single and two mode

squeezing terms are nonzero only when there is an imbalance between the two field energies.

3.1.2 Flux Modulation and Parametric Rates

To induce parametric beam splitter, single mode, and two mode squeezing operations, we modulate the

junction inductance such that LJ → LJ0
+ δLJ sin(ωsbt). Modulating LJ will modulate the resonance

frequencies and couplings.
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Expanding these functions about LJ = LJ0 to first order in the modulation strength δLJ gives

ω̃k(LJ , LJ0) ≈ ω̃k(LJ0 , LJ0) + δLJ
dω̃k
dLJ

∣∣∣∣
LJ=LJ0

sin(ωsbt) = ωk(LJ0) + εk sin(ωsbt) (3.21)

gBS,k′k′′(LJ , LJ0) ≈
���

���
���:

0

gBS,k′k′′(LJ0 , LJ0) + δLJ
dgBS,k′k′′

dLJ

∣∣∣∣
LJ=LJ0

sin(ωsbt) = εgBS,k′k′′ sin(ωsbt) (3.22)

gSMS,k′(LJ , LJ0) ≈ gSMS,k′(LJ0
,LJ0

) + δLJ
dgSMS,k′

dLJ

∣∣∣∣
LJ=LJ0

sin(ωsbt)

= g0
SMS,k′ + εgSMS,k′ sin(ωsbt) (3.23)

gTMS,k′k′′(LJ , LJ0
) ≈
��

���
���

��:0

gTMS,k′k′′(LJ0
, LJ0

) + δLJ
dgTMS,k′k′′

dLJ

∣∣∣∣
LJ=LJ0

sin(ωsbt) = εgTMS,k′k′′ sin(ωsbt) (3.24)

where we used the orthogonality of the eigenfunctions, i.e. AEk′k′′(LJ0 , LJ0) = 0 and AHk′k′′(LJ0 , LJ0) = 0

when k′ 6= k′′, to show that the first terms in the expansions of the couplings vanish.

To cancel the time dependence in the frequencies, we go to the rotating frame described by the

unitary [110]

U(t) = exp

{
i
∑
m

[(
ωmt−

εm
2ωsb

cos(ωsbt)

)
ã†mãm

]}
(3.25)

whose action on the operators ãk′ is given by

U(t)ãk′U
†(t) = ãk′ exp

[
−i
(
ωk′t−

εk′

2ωsb
cos(ωsbt)

)]
= ãk′e

−iωk′ te
i
ε
k′

2ωsb
cos(ωsbt)

= ãk′e
−iωk′ t

∞∑
m=−∞

imJm

(
εk′

2ωsb

)
eimωsbt (3.26)

U(t)ã†k′(LJ0
)U†(t) = ã†k′e

iωk′ t
∞∑

m=−∞
i−mJm

(
εk′

2ωsb

)
e−imωsbt (3.27)

We used the Jacobi-Anger expansion [176] of the second term (3.26) to express the exponentiated cosine in

terms of Bessel functions of the first kind Jm(z)

e±iz cos(x) =

∞∑
m=−∞

i±mJm(z)e±imx (3.28)
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Substituting the modulated frequencies and couplings into the Hamiltonian in (3.16) and going to the

rotating frame defined by the unitary in (3.25), we find

H(t)→ H′ = U(t)H(t)U†(t)− iU(t)∂tU
†(t)

=
∑
k′

[
ã2
k′

(
g0

SMS,k + εgSMS,k′ sin(ωsbt)
)
e−i2ωk′ t

×
∞∑

m,n=−∞
i(m+n)Jm

(
εk′

2ωsb

)
Jn

(
εk′

2ωsb

)
ei(m+n)ωsbt + h.c.

]

+
∑
k′ 6=k′′

[
ãk′ ãk′′εgTMS,k′k′′ sin(ωsbt)e

−iΣk′k′′ t

×
∞∑

m,n=−∞
i(m+n)Jm

(
εk′

2ωsb

)
Jn

(
εk′′

2ωsb

)
ei(m+n)ωsbt + h.c.

]

+
∑
k′ 6=k′′

[
ã†k′ ãk′′εgBS,k′k′′ sin(ωsbt)e

−i∆k′k′′ t

×
∞∑

m,n=−∞
i(m−n)Jm

(
εk′

2ωsb

)
Jn

(
εk′′

2ωsb

)
ei(m−n)ωsbt + h.c.

]
(3.29)

where Σk′k′′ = ωk′ + ωk′′ and ∆k′k′′ = ωk′ − ωk′′ are the sum and difference frequencies between modes k′

and k′′. By driving the coupler at ωsb = ∆kk′ , the beam splitter terms with mode indices k, k′ became

stationary and the remaining terms rapidly oscillate, averaging to zero. Similarly, if take ωsb = Σkk′ or

ωsb = 2ωk, then we enact the two or single mode squeezing operations. As with other parametric schemes

such as [110, 111], the strength of the interaction is proportional to drive the strengths (εgBS
, εgSMS

, εgTMS
)

which is a function of the bare coupling strengths and the magnitude of the inductance modulation δLJ or

equivalently, flux modulation.

3.2 Discussion

Prior to the BBQ quantization method, there were only a handful of 3D superconducting transmon

qubits and the tools developed to analyze microwave circuits with cQED that had not been fully ported to

the 3D domain. When the EPR method arrived, the black-box prescription had become exactly that, the

default method to describe 3D cavity-Josephson junction systems, although the driven modal Ansys HFSS

simulations in BBQ were fraught with ambiguities in identifying resonance frequencies and estimating

losses26 with expensive, fine frequency sweeps. EPR shifted the problem from driven modal frequency

sweeps to obtain impedances or admittances to an eigenvalue problem centered around ratios of energies.

26See Section 1.3.3 for a discussion of the subtleties encountered in those calculations.
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With the advent of open source tools such as Qiskit Metal and KQCircuits, one can now drag and drop

predefined graphical representations of superconducting circuits and generate a design ready for

photolithography and electron beam deposition with predictive modeling tools that leverage EPR and

BBQ for the quantum calculations.

This work looks to complement EPR and BBQ rather than supplanting them by generalizing the

energy participation ratio approach to include the cross terms, or field overlap integrals, at different mode

numbers and control or geometric parameters. We expect this technique to be closer to a first principles

approach to estimate both parametric and bare coupling rates in general 2D and 3D systems. This method

also holds applications in estimating loss rates to box modes and other parasitic resonances as a function of

geometric and external control parameters [177].

3.3 Conclusion

We presented a novel design and analysis approach to estimating parametric and bare coupling rates in

3D superconducting cavity systems with an external tunable element. The method agrees with the BBQ

and EPR analysis methods that have previously been shown to predict experimental Hamiltonian

parameters within a few percent. An open source software package is under development to share our

approach with the larger community of groups working on parametric tunable couplers and 3D

superconducting qubits.
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CHAPTER 4

GALVANIC COUPLING ELEMENT FOR SUPERCONDUCTING 3D CAVITIES

The continuous variable (CV) quantum computing field has expanded in the last five years with the

first demonstrations of GKP states, as discussed in Section 1.1.2, in trapped ions [60] in 2019 and

superconducting 3D cavity circuit QED systems shortly thereafter [61, 62]. Superconducting 3D cavity

implementations of GKP state generation and gate operations owe their successes in part to precision

control of harmonic oscillator states with nonlinear elements such as fixed and tunable frequency transmon

qubits.

Another promising cavity-based qubit is the dual-rail qubit, where logical states |0L〉 , |1L〉 map to the

single photon subspace given by the presence of a photon in cavity a (|0L〉 = |10〉) or b (|1L〉 = |01〉). The

original use of this encoding was in the optical domain [178], when beam splitters were readily available to

generate superposition states, and nonlinearities were sourced from Kerr-media such as beta-barium-borate

(BBO) [179]. With the arrival of high-coherence, parametrically activated microwave beam

splitters [9, 12, 16], a dual rail qubit encoded in two superconducting microwave cavities has been

demonstrated in [112, 113].

We highlight the role of the high-coherence beam splitters and general tunable couplers in realizing

both dual rail qubit encodings and enacting gates on GKP states through parametrically activated

interactions between two modes (a, b) of the form: Hint = gBSab
† + h.c. for frequency conversion (or beam

splitter operations) and Hint = gTMSab+ h.c. for amplification (or two mode squeezing) [58]. With the

exception of the work by Lu et al. [16], these tunable couplers have relied on capacitive coupling to a fixed

frequency transmon, tunable transmon (or SQUID), or Superconducting Nonlinear Asymmetric Inductive

eLement (SNAIL). To that end, we present a new tunable coupler design based on a galvanic coupling

element inspired by earlier planar realizations [8, 11, 180]. Estimates of the coupler loss channels indicate

that it preserves the base coherence of the buffer cavity and is at least competitive with the latest 3D

couplers in interaction strengths.

Here we present the first step towards a galvanic 3D tunable coupler, a linear tunable element that

minimally reduces the base coherence of the host cavity. We give a description of its operating principles,

estimate its tuning range and contributions to loss from contact resistance, radiation losses, dielectric loss

tangent, and wall losses.
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4.1 Two Post Coupler Design and Operation

The two post coupler is a derivative of the earlier single post λ/4 cavity whose fundamental mode is set

by the post height. As with other λ/4 resonances, the first harmonic is a factor of three higher in frequency

(3λ/4), which can be advantageous when trying to isolate a single mode, but undesirable if one is

interested in manipulating multiple cavity modes [106]. The single post design’s success is due to its

simplicity and negligible seam loss, as the post is embedded in a cylindrical cavity with a length much

larger than the post such that the electric fields and the surface currents are exponentially suppressed at

the top of the cavity where there is a seam [50, 144]. An essentially “seamless” design, the single post

cavity is the preferred first choice for 3D transmon realizations, where the transmon and control signals are

inserted into the high electric field region near the post, maximizing the dipole coupling between the

transmon and cavity fields [105]. Strong electric fields also couple to the dielectric substrate, typically

chosen to be sapphire for its relatively low bulk dielectric loss tangent tan δ = 1.9× 10−8 [4].

One might ask, is it possible to couple cavity fields with a nonlinear element such as a transmon or

SQUID without placing the substrate in a high electric field region? Lu et al. [16] answered this question in

the affirmative with a SQUID coupled to the high magnetic fields near the bottom of a single post cavity

where the electric fields are suppressed. Our design takes this idea one step further, moving the SQUID to

the boundary of a two post cavity, coupling it to the cavity currents by direct, galvanic contact between its

pads and the two posts. The two lowest modes of the two post coupler are high-Q, similar to the single post

in that the electric fields fall off exponentially from the posts, minimizing seam loss at the top of the cavity.

To make contact between the posts and the SQUID capacitor pads, a slot is cut between and

underneath the two posts to interrupt the current flowing between the posts in the differential mode shown

in the right panel of Figure 4.1. This mode is the first harmonic of the two post cavity, while the

fundamental mode is referred to as the common mode as the electric fields and surface currents on both

posts point in the same direction. It follows that the differential mode will change as the inductance of the

SQUID changes with dc flux bias. The common mode will not tune with flux as there is a current node at

the location of the SQUID. All other higher low-Q modes do not participate with the SQUID in electric

fields, magnetic fields, or surface currents and will not tune.

The SQUID can be modeled as an effective nonlinear inductor whose inductance is a function of the

flux threaded through the SQUID loop [77]

LJ(Φ) =
LJ0

cos(2πΦ/Φ0)
(4.1)
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Common Mode:
No Tuning

Ia Ib

IJJ=0

Differential Mode:
Tuning

IJJ≠0

Ia Ib

ωa ωb

ωc

ωa−
ωb ω

a+ω
b

Figure 4.1 Two post coupler design. Left: two cavities ωa, ωb are coupled to a central cavity ωc with a
SQUID connecting its posts. The coupler itself is encircled with a purple dashed box. Right: common and
differential current modes of the lowest two modes of the split post cavity with a SQUID connecting the
posts. No current flows through the SQUID (IJJ = 0) in the common mode, yet nonzero current flows
through the SQUID in the differential mode.

Replacing the SQUID with a variable inductor simplifies the analysis and allows us to express the

coupling strengths in terms of electric and magnetic field overlap integrals as was discussed in Chapter 3.

The couplings are parametrically activated by applying an ac flux bias at the sum (blue sideband) and

difference (red sideband) frequencies of the cavities a and b in Figure 4.1. These interactions are also

referred to as the beam splitter HBS = gBSab
† + h.c. and two mode squeezing HTMS = gTMSab+ h.c. terms.

To arrive at these interactions, we briefly summarize the results of the work in Chapter 3 relating the

quadratic Hamiltonian for an arbitrary structure with electric and magnetic field energies defined by the

integrals

H =
1

2
ε

∫
V

E(x) ·E(x) d3x +
1

2
µ

∫
V

H(x) ·H(x) d3x (4.2)

Expanding the electric and magnetic fields in terms of the their eigenmode solutions at a given inductance

LJ and expressing those fields as linear combinations of fields at a fixed inductance LJ0
, we are arrive at a

Hamiltonian in the LJ0 basis (operators and eigenmode fields with tildes).
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This Hamiltonian, with all operators, electric, and magnetic eigenmode solutions with tildes, whose

coefficients are functions of field overlaps at different mode numbers and inductances is given by

H/h̄ =
∑
k

[
ω̃k

(
ã†kãk + 1/2

)
+ gSMS,k

(
ã2
k + ã†2k

)]
+
∑
k 6=k′

[
gBS,kk′

(
ã†kãk′ + ãkã

†
k′

)
+ gTMS,kk′

(
ã†kã
†
k′ + ãkãk′

)]
(4.3)

The ultimate goal of this work is to calculate the magnitude of the beam splitter, single mode squeezing,

and two mode squeezing coefficients, gBS,kk′ , gSMS,k, gTMS,kk′ using EPR, BBQ, and the field overlap

integral method developed as part of this thesis. Before performing those calculations, we will survey the

geometric parameter landscape of the coupler to gain intuition into the design trade-offs between loss

mechanisms and tuning range which directly translates to bare and parametric coupling strengths.

4.1.1 Two Coupler Geometric Studies

We studied a subset of the geometric design parameters of the coupler as a course-grained search of the

larger parameter space to discern the interplay between losses and coupling strengths in this design. There

are reasons to suspect, a priori, that coupling and seam loss will track with one another, as the tuning of

the differential mode in this galvanic design should depend on the amount of current flowing across the

junction (SQUID, referred to interchangeably as the junction hereon) and the seam loss goes as the square

of the current across a seam [27, 181]

Q−1
seam = G−1

seam

L
∫
γseam

|J× l|2 dl

ωµ0

∫
V
|H|2 d3x

=
yseam

gseam
. (4.4)

We will focus on the numerator of (4.4), as the denominator is a material-dependent factor, whose value

can range by orders of magnitude depending on the materials used and the clamping force at the joint.

Unlike in the split post cavity in Chapter 7 and other applications where microwave transmission lines or

cavities encounter a seam and yseam can be engineered to be small,27 we want to maximize the amount

current flowing across the junction. By convention, the seam loss is calculated at the smallest, innermost

intersection between two metallic contacts [182], which happens to be where the junction pads contact the

bottom of the posts.

In Figure 4.2, we report the geometric sweeps, focusing on the pad width and post diameter that

change the length of the post-pad intersection where the seam loss is calculated. We see that the seam

admittance is sensitive to the pad width, and to a lesser extent to the post diameter.

27For example, one can select a seam along a plane where there are no currents perpendicular to the seam for the mode of
interest, or quarter wave chokes can create a current node at the location of the seam.
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(a) (b)

Post Diameter = 4 mm Pad Width = 0.5 mm

Figure 4.2 Geometric studies of tuning range and maximum seam admittance. (a) Coupler pad width
sweep and (b) coupler post diameter sweep. Tuning range is calculated as the difference in frequency of the
differential mode at LJ = 1 nH and LJ = 10 nH where the frequency change is linear in LJ . Encircled
points indicate the “optimal” design points in Section 4.2 and post diameter, pad width labels indicate the
fixed values used in each sweep.

4.2 Optimized Design Results

Following the geometric studies, we converged on a candidate design in the two post configuration with

large tuning and bounded loss. We note that this is not an optimal design in the sense of a local minimum

of a cost function and there are additional experimental limitations, such as the actual range of LJ .

In Figure 4.3, we see that the differential mode (Diff) tunes by hundreds of MHz, with a linear tuning

range between 1 and 10 nH, achievable with contemporary dc-SQUID static flux biases. As expected, the

common mode (Comm) does not tune with LJ . We fit the differential mode response to a

phenomenological model accounting for the change in inductance and a vertical offset ω0

ωDiff = ω0 +
1√

(L+ LJ)C
(4.5)

where C is the capacitance of the mode and L is related to the bare mode frequency by C.

The mode quality factors reported are the upper bounds, as the finite element model only includes

dielectric and radiative losses in the calculation of the mode quality factors. We observe that the due to

negligible participation of the junction in the common mode, the common mode does not vary with LJ .

The differential mode Qi, however, decreases by an order of magnitude, from 3× 109 at low LJ to 2× 108

at LJ = 10 nH, in the desired linear range of tuning. This sets a stringent requirement on the seam

conductance on the order of 108–109 S/m to recover the radiation and dielectric loss limit of the coupler.
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The highest seam conductance reported in the literature is gseam > 1010 S/m in indium-indium bump

bonds and gseam approaching 109 S/m in indium cavities, and high purity aluminum cavities (4N) with

currents perpendicular to seams have gseam ∼ 104 S/m [181].

This analysis might suggest that the coupler quality factor is limited to Qi ∼ 104–105, three to four

orders of magnitude less than the upper bound given by the dielectric and radiation loss calculations.

Recent work in sputtering 1.6 µm aluminum thin films onto diamond-turned 6061-Al cavities gave a

gseam = 5.9× 107 S/m [182]. The more likely solution for this design is a form of indium bump bonding,

with indium hemispheres deposited onto the SQUID pads. Contact is made by pressing the chip with the

pads and indium bump bonds into the posts with a clamp from the bottom of the cavity.

(a) (b)

Figure 4.3 Optimized design mode tunings (a) and quality factor upper bounds, including radiative and
dielectric losses (b) as a function of junction inductance LJ .

4.3 Conclusion

We designed a 3D galvanic tunable coupler with estimated tuning of hundreds of MHz over a range of

SQUID inductances of 1 to 10 nH. The losses of this coupler are dominated by the high seam admittance

where the SQUID pads contact the cavity posts. The radiative and dielectric losses of the differential mode

that tunes are one to two orders of magnitude higher than the stationary common mode. Future

calculations aim to estimate the parametric coupling rates with the field integral overlap method, as well as

detailed simulations of the losses incurred by introducing a flux line into the coupler cavity.
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CHAPTER 5

COPLANAR WAVEGUIDE MICROWAVE LOSS EXPERIMENTS

The performance of superconducting qubits, and all solid state qubits for that matter, is bounded by the

intrinsic loss properties of their constituent materials. As we discussed in Section 1.5, Gao [66] identified

the primary excess noise source in superconducting resonator as surface and interface states modeled by a

distribution of two level systems. Superconducting qubits are subject to the same noise sources [129], and

superconducting resonators have long been a proxy for investigating those losses that manifest in qubits.

5.1 Loss Budgets

A recent series of systematic studies performed by Calusine et al. [183], Woods et al. [25], and Melville

et al. [184] used trenching and isotropic etching of coplanar waveguide resonators to disentangle losses from

each interface of the resonators – substrate-air (SA), metal-air (MA), metal-substrate (MS), and bulk

substrate.28 Each interface is assigned an electric field participation pj which is a ratio of the electric field

energy stored in that interface region with volume Vj and dielectric constant εj relative to the electric

stored in the entire device, including relevant vacuum regions

pj =

1
2εj
∫
Vj
|E|2 d3x

UE,tot
(5.1)

UE,tot =
∑
j

1

2
εj

∫
Vj

|E|2 d3x (5.2)

where εj = ε0εrj and the sum defining the total electric field energy UE,tot runs over all objects considered

in a finite element simulation of the resonator. These participations are calculated with either a full-wave

3D finite element electromagnetic simulation or a 2D cross-sectional electrostatic simulation of a section of

CPW resonator, e.g. all vacuum and dielectric regions. The 2D cross-sectional electrostatic simulations

assume that the electric fields are constant over the thickness tox,j defining the interface region, replacing

the numerator in (5.1) with

pj =

1
2εjtox,j

∫
Sj
|E|2 d3x

UE,tot
(5.3)

where Sj is the surface of the interface. Each interface is assigned a thickness extracted from

cross-sectional transmission electron microscopy (TEM) imaging or estimated to be on the order of 3 nm,

in most cases for Nb and Al thin films and bulk, etched metals [4, 185].

28The bulk substrate loss is attributed to the volume of the substrate and not an interface.
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Figure 5.1 Etching of silicon to accentuate interface and bulk losses. MS (a), SA (b), MA (c), and bulk (d)
concentrated geometries fabricated with isotropic etching of TiN CPW resonators on silicon. Reproduced
with permission from [25].

In Figure 5.1, we highlight the work of Woods et al. [25], illustrating the extreme geometries needed to

separate the three interface and bulk losses. Using an iostropic etch of silicon in Figure 5.1, Woods et al.

fabricated four sets of resonators that are sensitive to the three interface types and the bulk substrate,

separately. Extracting the loss contributions from these four regions requires measuring hundreds of

resonators to accumulate statistics for each loss contribution. These measurements are combined with

simulations of the participations for each region and the loss contribution from each region is extracted by

solving the linear system of equations [25]


pMS,1 pSA,1 pMA,1 pSi,1

pMS,2 pSA,2 pMA,2 pSi,2

pMS,3 pSA,3 pMA,3 pSi,3

pMS,4 pSA,4 pMA,4 pSi,4



xMS

xSA

xMA

xSi

 =

 1/QTLS,1

1/QTLS,2

1/QTLS,31/QTLS,4

 (5.4)

where the right hand side is a column vector of measured TLS losses for each resonator, the left hand side

matrix is the participation matrix with columns corresponding to the interface and bulk participations and

rows corresponding to the values simulated for the four resonator geometries, and the column vector of x’s

is the normalized loss factors for each interface and the bulk.
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These loss factors are proportional to the dielectric loss tangent associated with each interface,

normalized to the simulated (nom or nominal) and measured interface thicknesses (without the nom

subscript) [25]

xj =

{
tj/tnom,j

εnom,j/εj
tan δj , if E || to interface

tj/tnom,j

εj/εnom,j
tan δj , if E ⊥ to interface

(5.5)

The ideal participation matrix is the identity matrix, with a condition number29 equal to one. Extreme

geometries lead to a participation matrix that approximates the identity by concentrating the electric field

energy in one interface (or in the bulk).

(a) (b)

Figure 5.2 (a) Loss budgets of resonators measured in [25] with the highlighted resonators exhibiting the
sensitivity to one interface or bulk loss. (b) Simulated isotropic and aniostropic etched device loss tangents
to illustrate the increased sensitivity to the MA interface. Reproduced with permission from [25].

Figure 5.2 (a) shows a series of loss budgets with the individual loss contributions for each resonator

adding to the total measured TLS loss. The highlighted resonators, starting from the left, exhibit high

sensitivity to the SA, MA, and bulk silicon losses. Not shown, is a resonator that is more sensitive to MS

interface losses as in the geometry from Figure 5.1 (c). In Figure 5.2 (b), two histograms of simulated

anisotropically and isotropically etched devices clearly illustrates the necessity for these extreme

geometries, as well as the large disparity between the condition numbers of the participation matrices for

each etching process, 100000 vs. 2000 in the anisotropic and isotropic geometries, respectively [25].

In Chapter 7, we will discuss experiments tailored to extracting bulk losses in three inch wafers. This

complementary measurement technique aims to screen wafers from various vendors, processed under

different conditions that are not as easily accessible to CPW measurement approaches.

29The condition number is a measure of the difficulty of inverting a matrix. Depending on the definition, it is the ratio of the
maximum and minimum singular values, the ratio of largest and smallest eigenvalues, or the product of the norms of the
matrix and its inverse or pseudoinverse. The identity matrix has a condition number of one and all other matrices are greater
than one, with larger condition number corresponding to a more difficult linear system to solve.
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We summarized the work by Woods et al. [25] and the companion papers from MIT Lincoln Laboratory

to give context to the other loss measurements reported in this chapter and to contrast with the cavity

measurements in Chapter 7. The next section will review another class of techniques where the geometry of

the CPW resonators is fixed, but the materials or fabrication conditions are changed to observe changes due

to those materials rather than separating contributions from all interfaces rigorously in every experiment.

5.2 A/B Testing for Comparative Loss Extraction Experiments

The set of materials and fabrication controls in superconducting resonators and qubits is large, yet

finite. There are only so many elemental superconductors and related alloys that have the transition

temperatures, and by extension superconducting gaps, that are compatible with microwave control and

millikelvin temperature dilution refrigerators. Among these are aluminum (Al), niobium (Nb), tantalum

(Ta), and their alloys with titanium (Ti) and nitrogen (N). There are other materials including the oxides

that form Josephson junction tunnel barriers, as well as the III-V semiconductors used in the super-semi

gatemon qubits and tunable couplers discussed in Chapter 2, but the focus of this chapter will be on Al,

Nb, Ta, and their alloys. The space of fabrication controls is much larger and interdependent, including

but not limited to substrate temperatures, electron beam and sputtering energies, etching processes and

acids, argon ion milling, liftoff processes, and countless others outside of the scope of this thesis [41, 186].

In Chapter 6, we will discuss the role of grain size in superconducting resonator loss, specifically on Ta

thin films growth on c-axis sapphire. The next section will address the effects of hydrofluoric (HF) acid

etching on the loss of Nb resonators, along with definitive aging comparisons. A subsequent section will

review a series of capping studies where superconducting resonators are capped with normal metals, other

superconductors, or dielectrics to modify the MA interface. In each study, the A/B comparison is between

a control (A), an untreated Nb or Ta resonator and (B) a device with a capping layer or chemical

treatment. The comparisons focus on TLS losses and power independent (PI) or losses due to the

conductivity of the superconductor.

5.2.1 Niobium Hydride Experiments

This section is based on unpublished work performed with Northwestern, University of Colorado

Boulder, NIST Boulder, and other collaborators in the Superconducting Quantum Materials and Systems

(SQMS) National Quantum Initiative (NQI) Center [187]. The experiment involved six devices with eight

Nb resonators per device, fabricated with the “white paper mask” [188] on intrinsic silicon substrates.
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Each device received a different wet chemical etch treatment with the labels: CTRL (control, untreated

Nb), HF2p (2 % HF), HF5p (5 % HF), HF8p (8 % HF), NH4F (ammonium fluoride or NH4F), and BOE

(buffered oxide etch, 5:1 NH4F:HF). These etchants are used throughout typical semiconductor fabrication

process steps that have been adapted for superconducting qubits and resonators. HF, in particular, has

been shown to remove the lossy niobium pentoxide, Nb2O5 that is associated with increased TLS loss and

that oxide, along with the Nb2O3 and NbO suboxides that have been the focus of other studies led by the

SQMS center [189].

(a) (b) (c)

Figure 5.3 Niobium hydride microwave measurements. (a) Summary of the power dependence of the losses
of all resonators. Box and whisker plots of (b) the TLS loss and (c) power independent loss. The labels on
the box and whisker plots are as follows: blue box – bottom line is 25th percentile, top line is the 75th
percentile; black horizontal lines – minimum / maximum values, excluding outliers; red plus signs –
outliers; red horizontal lines – median values; red triangles – 95 % confidence intervals about the median;
dashed black lines – “whiskers” extending from the 25th percentile to the minimum and from the
maximum to the 75th percentile.

Although HF and other fluorine-based etchants effectively strip oxides from the Nb surfaces and silicon

substrate, hydrogen can incorporate into the bulk of the Nb film after the Nb2O5 is removed, producing

niobium hydrides NbHx of various phases. The presence of these hydrides was first observed in

superconducting Nb cavities tailored to particle accelerator applications following similar wet chemical

treatments that led to significant reductions in the internal quality factors of those cavities [190]. The

SQMS study with six devices tracked two phases of NbHx, the α-NbHx superconducting phase with a lower

Tc than Nb and the β-NbHx phase that does not exhibit superconductivity, at least down to 1.3 K [191].
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The α phase is body centered cubic (BCC) with interstitial hydrogen occupying a tetrahedral site in the

Nb metal, while the β phase is face centered orthorhombic (FCO) on tetrahedral sites at higher hydrogen

concentrations [192]. As the concentration of HF in the acids increases, so does the hydrogen content in the

Nb film and the number of hydrides in the film. The room temperature materials characterization of these

films is outside of the scope of this thesis, but we note that it correlated the presence of hydrides at room

temperature with the microwave loss measurements results that are the focus of this chapter.

We expect that the Tc will decrease for the films with high HF concentration, leading to more thermal

equilibrium quasiparticles and power independent losses. To investigate the link between increased

hydrides from HF and other fluoride-based acide treatments, we performed microwave transmission

measurements, extracting the power independent and TLS losses for each device. In Figure 5.3, we

summarize the microwave loss measurements, with the TLS curves in (a) of all resonators across the six

devices, and the TLS loss and power independent losses in (b) and (c). There is a distinct increase in the

power independent loss with increasing HF concentration, consistent with the materials characterization

findings indicating that more hydrogen incorporates into the Nb film forming the lower Tc and

non-superconducting α and β phases of NbHx. We observe a weak dependence with HF concentration and

TLS loss, with an notable increase in the spread of the losses.

After exposing the devices to atmosphere for two months on a laboratory bench, we repeated our

microwave measurements to study the effects of aging on oxide growth and hydrogen loading.

In Figure 5.4, we report the TLS and power independent losses before and after aging. Power independent

losses did not appreciably change due to aging, consistent with the connection made between hydrogen

loading and power independent losses, as the only change expected from aging is an increase in oxide

thickness on the metal-air and substrate air interfaces. The hydrogen content in the Nb film should not

change with time, as the resident hydrogen in the bulk is likely trapped by the surface oxide which also

prevents further incorporation of hydrogen with prolonged exposure to atmosphere. TLS losses increased

across all six samples, consistent with previous aging studies [193] and the correlation between surface

oxide thickness and TLS loss. Our results may also contradict other studies linking hydrides with

variations in loss from cooldown-to-cooldown and changes in TLS losses with aging [194].

5.2.2 Capping Studies

As we have discussed in the previous sections, the interfaces, especially the metal air (MA) or the

surface of the superconductor, affect the loss of resonators due to the presence of oxides and hydrides. To

change the MA interface, one might consider adding a capping layer to the metal superconductor to either

prevent oxides of that metal from forming or use a metal with a less lossy oxide, such as Ta.
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Nb Surface Treatments
❏ Nb on i-Si
❏ Samples fabricated in AMP Group 

(Tony McFadden)
❏ Surface treatments by Northwestern

Black boxes:
Initial measurements
03/17/2023

Sample packages sat out in lab ambient 
environment for 
~8 weeks

Red boxes: 
Aged measurements
5/30/2023

δ0,TLS δother

Figure 5.4 Aging study of niobium hydride samples following two months of aging in laboratory
atmosphere. (a) TLS losses and (b) power independent losses before (black) and after (red) aging.

Such a study of capped qubits was recently performed by [195] where Nb qubits were capped with Al,

TiN, and Ta. This work is under review and some of our recent measurements agree with their results that,

on average, these cappings strategies lead to minimal changes in the loss between the capped and control

devices.

Figure 5.5 summarizes the capped devices with Ta, TiN, Si, and PdAu fabricated at Rigetti

Computing, NIST Quantum Sensors Group, Northwestern University, and Fermilab. The results show

minimal improvement, if any, over the control devices with capping for the power independent and TLS

losses. There are differences among the Nb control devices when considering the substrate used, silicon or

sapphire, where the silicon devices have significantly lower TLS losses. This difference can be accounted for

by considering the difference in trenching of the silicon substrate from the etch that is not present in

sapphire devices, as the etchants used do not significantly etch the sapphire. The silicon trenching reduces

the SA participation of the resonators deposited on silicon relative to those patterned on sapphire.

Rescaling the loss of the sapphire in Figure 5.6 by the ratio of participations for the trenched silicon and

the untrenched sapphire gives a similar total loss for both substrates across the totality of control samples.
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Summary of Resonator Capping Experiments

Conclusion: capping is minimally effective in these devices

Nb Control
CappedRigetti: 

• dc sputter Nb on high-res i-Si

NIST QSG:
• HEMEX prepped with NH4OH
• Sputter 200nm Nb, 10nm TiN
  in situ, SF6 etch

Northwestern/NIST AMP:
• a-plane Al2O3 substrate
• Sputter 85 nm Nb, 10 nm 
  e-beam Si in situ
• Resonators fabricated at NUFAB

NIST SEG / Fermilab: 
• PVD Nb 160 nm, PdAu 10 nm 
• Crystal Systems HEMEX
• Fab at PNF by Fermilab

Ta

TiN Si

PdAu

Ta

TiN Si PdAu

Rigetti QSG NW/AMP SEG/FL Rigetti QSG NW/AMP SEG/FL

TLS Loss Power-Independent Loss

Figure 5.5 Capping studies of devices from multiple groups and fabrication conditions. Rigetti: dc
sputtered Nb on high resistivity silicon; NIST Quantum Sensors Group (QSG): HEMEX sapphire prepared
with NH4OH, sputtered 200 nm Nb with 10 nm TiN, SF6 etch; Northwestern (NW) / Advanced
Microwave Photonics (AMP): sputtered 85 nm of Nb on a-plane sapphire with in situ 10 nm electron beam
silicon; NIST Superconductive Electronics Group (SEG) / Fermilab: PVD 160 nm Nb, 10 nm PdAu on
crystal systems HEMEX sapphire. Left (light blue) control and right(dark blue) capped resonators.

(a) (b)

Figure 5.6 Approximate loss budgets constructed from a combination of experimental loss data and
simulated device participations. (a) Unscaled data from all Nb control devices from the capping studies on
sapphire (Al2O3) and silicon, along with Nb control qubits. The thick bar center bars indicate the
measured loss data compared to the loss budget estimates. (b) Rescaled Nb on Al2O3 losses to account for
the difference in substrate air participations between the trenched silicon resonators and untrenched
sapphire resonators.

Figure 5.6 shows the approximate loss budgets constructed from participation ratio simulations and

multiple Nb control resonator devices.
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The least squares problem associated with this two device-type study is given by

(
pMS,1 pSA,1 pMA,1 pSi,1

pMS,2 pSA,2 pMA,2 pSi,2

)
xMS

xSA

xMA

xSi

 =

(
1/QTLS,1

1/QTLS,2

)
(5.6)

where the indices 1 and 2 refer to the silicon and sapphire devices. The numerical entries of this

participation matrix are given in Table 5.1. The condition number of this participation matrix is

reasonably small enough (∼ 500 by a ratio of its singular values) to solve the least squares, but the matrix

P̃T P̃ that defines the covariance matrix C = (P̃T P̃ )−1 of the least squares problem in (5.6) might be

poorly conditioned in this case, where P̃ij = Pij/σQ−1
TLS,i

and σQ−1
TLS,i

is the uncertainty on the i-th

measured TLS loss [4].

Table 5.1 Participation matrices for sapphire and silicon Nb control devices.

Substrate pSA pMS pMA pSi

Sapphire 0.0045 0.0043 0.0001 0.9
Silicon 0.0013 0.0026 0.00008 0.89

5.3 Conclusion

We presented two sets of A/B resonator loss studies to emphasize the utility of such studies in quickly

evaluating the effect of changes in fabrication processes and materials to device performance. This is

contrasted with the systematic participation-guided studies by Woods et al.. There are proposed hybrid

studies on the horizon, where devices that are particularly sensitive to MA loss are used to study the

efficacy of capping strategies. The split post cavity discussed in Chapter 7 is another example of a device

that is extremely sensitive to bulk losses. There are alternative CPW geometries that can target the MS

interface being discussed to replace the isotropic etching approach from [25]. A combination of these

techniques could improve the accuracy of future loss budgets and obviate the need for isotropic etching to

achieve accurate loss extraction of the three interface and bulk loss contributions. More work is needed to

explore the mechanisms behind the effects of capping and other loss reduction strategies, especially those

that lead to reductions in power independent losses where they are not expected, such as the silicon

capping results in Figure 5.5.
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CHAPTER 6

GRAIN SIZE IN LOW LOSS SUPERCONDUCTING TA THIN FILMS ON C-AXIS SAPPHIRE

Reproduced with permission from [196] published in Journal of Applied Physics.

Sarah Garcia Jones,30,31,32 Nicholas Materise,30,22 Ka Wun Leung,30,33 Joel C. Weber,34 Brian D.

Isakov,31 Xi Chen,33 Jiangchang Zheng,33 András Gyenis,31 Berthold Jaeck,35,33 and Corey Rae H.

McRae36,31,32,34

6.1 Abstract

In recent years, the implementation of thin-film Ta has led to improved coherence times in

superconducting circuits. Efforts to further optimize this materials set have become a focus of the subfield

of materials for superconducting quantum computing. It has been previously hypothesized that grain size

could be correlated with device performance. In this work, we perform a comparative grain size experiment

with α-Ta on c-axis sapphire. Our evaluation methods include both room-temperature chemical and

structural characterization and cryogenic microwave measurements, and we report no statistical difference

in device performance between smaller- and larger-grain-size devices with grain sizes of 924 nm2 and 1700

nm2, respectively. These findings suggest that grain size is not correlated with loss in the parameter regime

of interest for Ta grown on c-axis sapphire, narrowing the parameter space for optimization of this

materials set.

6.2 Introduction

Superconducting qubits are a promising avenue for scalable quantum computing devices due to their

high-fidelity operation [197–200]. Recent advances in qubit design, packaging, and control have shrunk the

gap toward their practical use [35, 201]. Still, dielectric losses due to bulk substrates, surface oxides, and

amorphous or defect-ridden material interfaces limit the coherence of superconducting qubits and ancillary

devices [4, 202, 203].

30These authors contributed equally to this work.
31Department of Electrical, Computer, and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309,

USA
32Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
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China
34National Institute of Standards and Technology, Boulder, Colorado 80305, USA
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Microscopically, materials loss is largely associated with the excitation of two-level systems (TLS) that

dominate microwave losses in the technologically relevant range of low temperatures and single-photon

numbers [17, 19]. Materials engineering has been identified as a leading route for improvement of

superconducting qubit coherence by reducing the effect of TLS [204].

Recent works demonstrate improved qubit performance when α-phase tantalum (Ta) replaces niobium

(Nb) as the superconducting thin film base layer for device fabrication [202, 205]. These findings are

further supported by loss measurements of superconducting microwave resonators [203, 206–208] and it is

believed that the loss reduction is afforded by the simple oxide structure of the Ta film surface [202].

Further evidence for this is suggested by recent work capping Nb films with Ta for improved qubit

performance [195].

A detailed materials study of Nb-based qubits links the bulk properties of the polycrystalline films to

qubit losses [209]. Smaller crystalline grain sizes were found to correlate with increased qubit losses, which

could arise from TLS present at the subsurface grain boundary oxides in Nb films [209]. Hence, the grain

size of the superconducting base layer has recently been debated as a promising process parameter to

further minimize microwave losses in Ta films. Moreover, controlled A/B-testing studies would be desirable

to firmly establish this relation and it remains unknown whether grain size effects on microwave losses

extend to resonators based on Ta films, whose surface and subsurface oxide structure differs from that of

Nb films.

The goal of this work is to probe the relationship between grain size and microwave losses for α-Ta films

grown on c-axis sapphire, a substrate commonly used for Ta growth [202, 206]. To this end, we perform

microwave loss measurements of coplanar waveguide resonators made from magnetron-sputtered α-Ta films

with large and small grain sizes. We compare the losses of both types of films across thirty resonators from

multiple chips and report no statistical difference between the performance of films with small and larger

grain sizes. In combination with results from the chemical and crystallographic thin film characterizations,

our observations indicate that grain size does not play a significant role in microwave losses for α-Ta films

across the tested parameter regime.

6.3 Ta Growth and Characterization

Ta films of nominal 200 nm thickness were deposited on c-axis sapphire wafers (2” diameter, 550µm

thickness, from Hefei Keijing Materials Technology) using dc magnetron sputtering. Prior to deposition,

the as-purchased substrates were cleaned via ultrasonication in acetone, isopropanol, and deionized water

for 5 min each and blown dry with nitrogen of purity 4N.
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Figure 6.1 Structural and chemical characterization of Ta films. (a) X-ray diffraction spectra of 2Θ-scans
for measurements of the ‘SGS2’ and ‘LGS2’ samples. The inset displays the corresponding spectrum for
the ‘LGS2’ sample over a larger angle (Θ) range. The detected diffraction peaks are labeled with the
corresponding Miller indices of the α-Ta phase. (b) Atomic force microscopy topographies of the ‘SGS2’
(left) and ‘LGS2’ (right) sample surfaces. (c) Electron binding energy spectra of the Ta 4f core level
obtained from X-ray photoelectron spectroscopy measurements at the surface of the ‘SGS2’ and ‘LGS2’
samples. The dominant Ta oxidation states are indicated. (d) Least squares fit (open squares) to an XPS
spectrum (solid black line) recorded at the surface of the LGS2 sample. Contributions to the spectrum by
the Ta 4f5/2 (magenta color) and Ta 4f7/2 (green color) core levels of Ta, (solid lines), Ta3+ (dotted lines),
and Ta5+ (dashed lines) were modeled by using Gaussian profiles.

To deposit thin films with different grain sizes, two different substrate temperatures T = 400 ◦C (sample

label ‘SGS’ or ‘smaller grain size’) and T = 500 ◦C (sample label ‘LGS’ or ‘larger grain size’) during the

deposition were chosen, while other deposition parameters (background pressure ≤ 1× 10−7 Torr, argon

pressure 3 mTorr, deposition power 150 W, deposition rate 3.6 nm/min) were not changed. The deposition

was carried out without the use of a seed layer. A T = 600 ◦C sample was also grown, but no increase in

grain size was detected, so this sample is not included in the detailed film comparison.
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Figure 6.2 Resonator loss power curves with small grain size (left) and larger grain size (right). Total loss δ
as a function of average number of photons in the cavity 〈nph〉 for all devices measured in this work - SGS1
(light blue), SGS2 (blue), LGS1 (red), and LGS2 (orange) resonators. Lines denote best fits to the TLS
model (Eq. (6.4)). 95% confidence intervals for Lorentzian fits to each data point are given, as well as the
prediction interval for each TLS-curve fit.

The large-scale diffraction spectrum of the films (Figure 6.1(a) inset) is dominated by a set of two

peaks, which can be associated with diffraction at the [110] and [220] planes of the α-Ta[220] phase. A

comparably small diffraction signal, which rises just above the background signal, is detected at 2Θ ≈ 33.7◦

that can be associated with the [002]-diffraction of the tantalum β-phase. Our observations indicate the Ta

films prepared for this study predominantly nucleate in the α-Ta phase. This finding is consistent with

previous reports on 200 nm thick α-Ta films on c-axis sapphire, which were deposited under comparable

conditions [202]. The close-up view of the α-Ta[110] peaks for the ‘SGS2’ and ‘LGS2’ samples is shown in

the main panel of Figure 6.1(a). The diffraction peak of the ’LGS2’ sample (σ = 0.4◦) has a smaller

full-width-half-maximum σ compared to that of the ’SGS2’ sample (σ = 0.5◦). While this observation is

indicative of a larger average grain size in the ’LGS2’ sample, we note that the Scherrer equation is less

suited to quantitatively analyze the grain size in this case, owing to the grain shape anisotropy and

significant grain size variations (see AFM measurements below). We further observed a small deviation in

the [110]-diffraction angle both between the ’SGS2’ (2Θ = 38.1◦) and ’LGS2’ (2Θ = 38.3◦) sample, as well

as with respect to the nominal bulk value (2Θ = 38.505◦). This can be attributed to the presence of strain

in the thin film structure, which appears slightly more pronounced in the ‘SGS2’ sample.

To characterize the crystalline grain size of the Ta films deposited at different substrate temperatures,

we carried out atomic force microscopy (AFM) measurements (tapping mode).
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The resulting AFM topographies for samples ‘SGS2’ and ‘LGS2’ are shown in Figure 6.1(b). Both

topographies are characterized by elongated crystalline grains oriented along the hexagonal basal plane of

the sapphire surface, consistent with previous reports [206]. Moreover, the grains of ‘LGS2’ exhibit a

visibly larger grain size area G than those of ‘SGS2’, consistent with our expectations in light of the

substrate temperatures during deposition. To quantify these grain size differences, we applied a watershed

algorithm [210] to determine G, which is an average across several 1µm2 surface areas per sample and

several samples for each deposition condition. This approach was previously applied to quantify grain sizes

of Nb films [209]. We obtain G = (924± 51) nm2 for the ‘SGS2’ and G = (1700± 29) nm2 for the ‘LGS2’

sample, respectively. Interestingly, the average grain size G = (1732± 92) nm2 of samples deposited at a

substrate temperature T = 600 ◦C is comparable to that of the T = 500 ◦C deposition [211].

To detect the possible influence of the crystalline grain size on the surface oxide structure, we

performed X-ray photoelectron spectroscopy (XPS) measurements (Kraxios Ultra DLD; X-ray source: Al

Kα line E = 1486.6 eV) on the ‘SGS2’ and ‘LGS2’ samples. We note that these samples did not undergo

surface treatment to remove native surface oxides prior to XPS measurements. The resulting XPS spectra

in Figure 6.1(c) show the photo-electron count as a function of the electron binding energy for the Ta-4f

core level. The spectra are dominated by a four peak structure, which is predominantly composed of the

spin-orbit split Ta0 and Ta5+ doublets that can be assigned to the metallic Ta bulk and the Ta2O5 at the

film surface, respectively [212, 213].

We quantify the relative contributions of the different Ta oxidation states to the observed XPS spectra

by applying a least-squares fit based on Gaussian profiles. We find a three doublet structure composed of

six Gaussians, as shown in Figure 6.1(d), can most accurately describe these spectra. The additional third

doublet exhibits a core level shift of ≈ 1.1 eV and can be assigned to the Ta3+ oxidation state of the Ta2O3

suboxide [213]. The resulting relative contributions of Ta, Ta3+, and Ta5+ obtained from these fits are

shown in Table 6.1 and reveal a near identical chemical structure of the tantalum film surface for both

samples. this is consistent with their almost identical XPS spectra (cf. Figure 6.1(c)). The relative spectral

weight of the Ta0 and Ta5+ peaks at the given incident X-ray energy is in close agreement with that found

in previous XPS studies of tantalum films and indicates a surface oxide thickness of approximately

2 nm [202].

In addition to structural and chemical analyses, we measured the electrical resistance R as a function of

temperature T (see the supplementary material for R versus T data). We extracted the residual resistance

ratio (RRR) and superconducting transition temperature Tc of the two films (Table 6.2).
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We compare this result with the Nb study by Premkumar et al., where a reduction in the grain size by

a factor of two corresponded to a similar reduction in RRR, and to a lesser extend, a reduction in Tc,

attributed to oxides forming in the grain boundaries of the smallest grain size Nb films. [209] In contrast,

here we see no significant difference in Tc, and a small decrease in RRR.

Table 6.1 Relative atomic concentration of different tantalum oxidation states in the ’SGS2’ and ’LGS2’
samples as obtained from fits to the XPS spectra.

Smaller grain size Larger grain size
Oxidation state atomic % atomic %
Ta0 18 20
Ta3+ 17 18
Ta5+ 65 62

6.4 Device Design and Fabrication

All devices are coplanar waveguide resonators fabricated using the same designs as reported by Kopas

et al. [188]. Nominally identical designs and fabrication procedures were used for all samples. Prior to

etching, the samples were cleaned via ultrasonication in toluene, acetone, methanol, and isopropanol, then

patterned using optical lithography and AZ-P4330-RS photoresist. The films were etched in a single 4

minute CF4/N2 Inductively Coupled Plasma – Reactive Ion Etch (Panasonic E640). Since the Ta films

were deposited on sapphire substrates, the etches did not produce any trenching into the substrate. After

etching, the resist was submerged in AZ 300 T stripper at 80 ◦C for 1 hour. After stripping, the samples

were diced and again cleaned ultrasonically in toluene, acetone, methanol, and isopropanol before being

wire bonded for cryogenic microwave measurement. Optical images of the resonators are shown in

Figure 6.3.

Inverse coupling quality factors, 1/Qc, of the fabricated resonators are presented in Supplementary

Materials Table 1 and range from 1.18× 10−6 to 6.61× 10−6 across all devices. This is a larger spread of

values with a trend towards smaller coupling factors than the simulated 1/Qc values of these designs, which

ranged from 1.95× 10−6 to 2.02× 10−6. [188] This variation is likely due to a slight over etch of the devices

during fabrication, which is congruent with a thinner measured conductor width than the lithography

designs used (design: 6µm, measured: 5.5µm).

6.5 Cryogenic Microwave Measurement

We perform transmission measurements on CPW resonators mounted to the mixing chamber (MXC)

plate of a FormFactor (formerly Janis) JDry 250 dilution refrigerator (DR) at a mixing chamber

temperature of ∼10 mK using a Keysight PNA N5222B vector network analyzer (VNA).
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Figure 6.3 Optical microscope images of coplanar waveguide resonators. (a) Full chip image of a
representative chip. All circuits measured contain eight resonators with identical couplers. (b) Close up of
feedline and resonator base. Conductor width is 5.5 µm and gap is 3.8 µm.

Figure 6.4 TLS loss in Ta on c-axis sapphire superconducting microwave resonators with smaller and larger
grain size. Left: Box and whiskers comparison, indicating median values (red line) and 95% confidence
interval of median (red triangles), with outliers shown as crosses. Right: Histogram of TLS loss for all
devices in this experiment.

The input power is varied over ten orders of magnitude in estimated photon power to accurately extract

the dominant two level system (TLS) loss [66]. Nominally identical gold-plated oxygen-free high

conductivity copper sample boxes house the resonator chips and are mounted to a plate perpendicular to

the MXC plate with additional mu-metal shielding surrounding all samples. Two Radiall R583 six-way

microwave switches allow multiple samples to be measured on the same pair of coaxial input and output

lines.
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The transmission data for each resonator (S21 of the two-port S-parameter matrix measured by the

VNA) is first normalized with a circle fit [123], and then fit to a diameter-corrected asymmetric Lorentzian

model of the form [121]

S21(f) = 1− (Ql / Qc) e
iφ

1 + 2iQl
f−f0

f0

(6.1)

Q−1
i = Q−1

l − Re
{
Q̂−1
c

}
(6.2)

Q̂−1
c = Q−1

c eiφ (6.3)

where f0 is the resonance frequency, φ is the asymmetry angle, Qc is coupling quality factor, Ql is the

loaded quality factor, and Qi is the internal quality factor. These parameters are fit with their

corresponding 95% confidence intervals from a least squares fitting routine [18]. A secondary fit of the loss

δ = Q−1
i as a function of average number of photons 〈nph〉 and fixed temperature T follows from the sum

of the TLS loss contribution δTLS and an offset term 1/QHP that accounts for power-independent losses

dominating at higher powers [17]

δ (〈nph〉 , T ) = δTLS (〈nph〉 , T ) + 1/QHP (6.4)

δTLS (〈nph〉 , T ) = Fδ0
TLS

tanh
(
h̄ω0

2kBT

)
(

1 +
〈nph〉
nc

)β (6.5)

where nc is the critical photon number at which TLS saturate at low power, ω0 = 2πf0 is the angular

resonance frequency, β is an exponent interpolating between the non-interacting TLS model β = 1/2 and

interacting TLS model β < 1/2 [130, 135, 136], δ0
TLS is the intrinsic TLS loss, F is the geometry-dependent

filling factor, h̄ is the reduced Planck constant, and kB is the Boltzmann constant.

In Figure 6.2, we plot the loss power dependence for all larger and smaller grain size devices used in this

work. The high power losses are subtracted to emphasize the similar power dependence (line shape) and

low power loss (TLS saturation loss) between the two samples, without the confounding factor of

high-power losses which are known to be caused by a myriad of sources external to the device

materials [17]. Figure 6.4 further highlights this point, as the medians from the box and whisker plots of

the intrinsic TLS losses for the larger and smaller grain size Ta films coincide with one another and their

respective histograms give similar variances.
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Table 6.2 Mean parameter values in A/B grain size comparison.

Smaller grain size Larger grain size
Grain area (nm2) 924± 51 1700± 29
Fδ0

TLS (×10−6) 2.19 ± 0.07 2.17 ± 0.03
RRR 2.584± 0.001 2.895± 0.001
Tc (K) 4.063± 0.005 4.056± 0.004

6.6 Literature Comparison

Figure 6.5 State-of-the-art literature comparison of TLS (Fδ0
TLS) and low-power (δLP) loss values in CPW

resonators. Filling factor F is estimated by plotting loss as a function of CPW gap width g. Grey lines
denote lines of constant interface loss. Filled symbols denote TLS loss values, while empty symbols
represent low power loss (TLS loss values unavailable).

Mean parameter values for the two resonator populations are summarized in Tab. Table 6.2. Though

our small-geometry resonators are very sensitive to TLS losses from surfaces and interfaces, we see no

statistical difference in TLS loss between the small-grain and large-grain devices, despite the difference in

grain size (with the large grain size devices being almost twice as big in area). This difference in grain size

is similar to that seen in Nb films in Ref. [209], where a difference in grain size of a factor of two was

correlated with a difference in qubit T1 of almost two, and a difference in resonator TLS loss was also

detected.

We refer to recent studies, especially the work by Lozano et al. [208], to estimate the number of devices

required to adequately sample the device-to-device variation in Fδ0
TLS. With more than ten devices of each

grain size, we exceed the number of devices for each variation (choice of control parameter value) in

Refs. Crowley et al. [203], Alegria et al. [206], Lozano et al. [208], Jia et al. [214].
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The median values of the losses for the untreated Ta resonators on silicon in Ref. Lozano et al. [208] are

comparable to the large- and small-grain size median losses reported in Figure 6.4(a).

Figure 6.5 shows that the difference between the large- and small-grain size losses in this study is

imperceptible on the same scale as other A/B comparisons, e.g. Refs. Alegria et al. [206], Lozano et al.

[208].

6.7 Discussion

An enduring hypothesis in the superconducting qubit community has been that larger grain size in

superconducting thin films is an indication of improved device performance. The simple and stable oxide

structure of Ta differs from that of Nb, where Premkumar et al. [209] reported that smaller grain size films

exhibited higher concentrations of suboxides in interface regions, resulting in measurably higher losses in

their Nb resonators. In this study, we show that smaller grain size does not induce significant low power

loss in Ta thin films grown between 400 and 500 °C on c-axis sapphire.

Microwave measurements of low power loss suggest that there is no statistically significant difference

between the intrinsic TLS losses of the two grain size Ta thin films. Chemical and structural analysis

support this interpretation, as the surface chemistry obtained by XPS is nearly identical for the two films.

This distinguishes densely packed Ta films with their simple Ta2O5 surface oxide structure [202] from Nb

films [209] for which subsurface grain boundary oxides contribute a grain size dependent TLS channel.

Following this train of thought, we expect qubits and resonators fabricated from Ta films to exhibit

more uniform microwave losses than those fabricated from Nb. At the same time, non-negligible

concentrations of Ta3+ species found in our XPS measurements indicates the presence of Ta2O3 suboxides

at the Ta metal-Ta2O5 interface consistent with a recent report [215]. Interestingly, we also detect practical

limits within which to tune the grain size of [110]-oriented α-Ta films deposited on c-axis sapphire:

Deposition at substrate temperatures below 400 °C favors the formation of the unwanted β-phase [216, 217]

whereas grain size does not respond to an increase of substrate temperature in excess of 500 °C in our

study. Thus, it would be interesting to explore other substrates or sapphire surface orientations to promote

larger grain sizes up to the formation of single-crystalline Ta films.

On the other hand, our study suggests more sophisticated materials engineering efforts that focus on

the reduction of TLS losses at the immediate metal-air surface rather than on the optimization of bulk

properties, such as grain size, are required to further reduce microwave losses below those reported in this

and other recent studies [203, 206, 208, 214]. These efforts will benefit from targeted A/B testing studies,

such as is presented here, to address the vast materials and processing parameter space in order to

maximize state-of-the-art superconducting qubit performance.
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6.8 Conclusion

We performed millikelvin microwave transmission measurements of α-phase Ta microwave resonators

with both larger- and smaller-grain size sputter-deposited on c-axis sapphire at two different growth

temperatures. Structural and chemical analysis reveal that the films differ only in their grain size and not

in their surface oxide types and concentrations, and crystal structure. The extracted intrinsic TLS losses

show no statistical difference between the two film types, suggesting that, in this materials regime, grain

size does not significantly affect millikelvin, ultralow power dieletric loss. We encourage future A/B

experimentation to continue to reduce the fabrication parameter space and to identify correlations between

other room-temperature materials characterization parameters and low-power, low-temperature microwave

performance of devices.

6.9 Supplementary Material

Please see the supplementary material for more information on the 600 ◦C deposited sample, as well as

4-8 GHz wide scans of the microwave background of each measured chip, a table of all extracted resonator

parameters, further detail on the microwave set-up, superconducting thin film resistances as a function of

temperature, and details of the Tc and RRR measurements.
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CHAPTER 7

WAFER-SCALE MICROWAVE DIELECTRIC LOSS EXTRACTION USING A SPLIT-POST

SUPERCONDUCTING CAVITY

Superconducting qubits are a promising candidate to build quantum computers. Their lifetimes now

extend into the millisecond range [185, 219] and beyond [220], with gate times on the order of a few to tens

of nanoseconds. These achievements are due to efforts to minimize field intensities in high loss regions,

engineer states with disjoint support [221, 222], and encode information in bosonic states [112]. Alongside

these efforts, systematic materials studies have expanded the understanding and mitigation of losses

resulting from interface and surface states in niobium and tantalum-based superconducting

qubits [174, 189, 215]. Yet there remains an upper limit on the coherence of superconducting qubits

deposited on dielectric substrates: the bulk loss of the substrate. Multiple precision measurements of bulk

losses have been performed using superconducting cavities including silicon substrates [223], lithium

niobate [224] and sapphire [4]. This last measurement set an upper bound on the loss of HEMEX sapphire

as 1.9(6)× 10−8 [4], with corresponding T1 on the order of ms, which recent experiments with planar

superconducting qubits are quickly approaching [185]. We note that this limit assumes unity participation

in the bulk of the substrate, which is on the order of 0.8 to 0.9 in planar qubits and in 3D qubits can be as

high as tens of percent.

In the above measurements of bulk loss, the substrate in question was modified to accommodate the

conditions of the experiment (diced, milled, etc.), but measurements of bulk losses in whole, unaltered

wafers have not been performed until now. Borrowing from the whispering gallery mode (WGM)

experiments [225, 226], we design a split post, reentrant cavity to measure three inch wafers with a near

unity dielectric participation in the wafer. Similar to the work by Read et al. [4], we perform a differential

measurement of the dielectric loss tangent by first measuring the cavity without a wafer, then loaded with

a wafer, extracting the wafer loss from the bare and loaded measurements.

7.1 Methods

We use a high purity 4N Al superconducting cavity to extract the bulk loss of a 3 inch wafer with a

differential measurement technique. The losses are extracted from transmission measurements, where the

frequency response of a high order quasi-transverse magnetic (TM) mode is fit to an asymmetric

Lorentzian with the diameter correction method (DCM) described in [121] and implemented in [18].
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First, we measure the losses of the bare cavity before and after wet chemical etching. The losses of the

cavity are the sum of the wall or conductive losses and the seam loss, given by [27, 50]

Q−1
walls =

Rs
Xs

λL
∫
S
|H|2 d2x∫

V
|H|2 d3x

=
Rs
Xs

pcond (7.1)

Q−1
seam = G−1

seamL

∫
γseam

|J× l|2 dl

ωµ0

∫
V
|H|2 d3x

=
yseam

gseam
(7.2)

where Rs is the surface resistance, Xs is the surface reactance, λL is the London penetration depth, and

pcond is the conductive participation ratio in the expression for the wall loss. The seam loss is calculated on

l, the vector tangent to the curve γseam defining the seam, Gseam is the conductance of the seam,

gseam = Gseam/L is the conductance per unit length, L is the length of the seam, and yseam is the

admittance per unit length of the seam, defined by the ratio of the current and magnetic field integrals.

Similar to the dielectric loss, the seam loss separates into a geometric factor (yseam) and a

material-dependent factor (gseam).

The losses associated with the bulk of the wafer follow from the phenomenological single species,

standard two level system (TLS) model [66, 130, 132]

Q−1
wafer = δwafer = δPI + Fδ0

TLS

tanh(h̄ω/2kBT )(
1 + 〈n〉

nc

)β (7.3)

F =
1
2εwafer

∫
Vwafer

|E|2 d3x
1
2ε
∫
V
|E|2 d3x

(7.4)

where δPI is a power-independent loss term, F is the electric filling factor, a ratio of the electric field energy

stored in the wafer compared to all space, δ0
TLS is the intrinsic TLS loss, ω is the resonance frequency of

the mode we are measuring, 〈n〉 is the average number of photons in the cavity, nc is the critical photon

number marking the onset of the TLS saturation, and β is a parameter 0 < β < 1, with β = 1/2 denoting

the noninteracting TLS limit and β < 1/2 the interacting TLS limit. We have written the denominator

of (7.4) in a shorthand that can be rewritten as a sum over the vacuum and wafer volumes with ε = εrε0 in

the case of the wafer with its dielectric constant εr and ε = ε0 for the vacuum.

Measuring multiple resonances of the bare cavity, we can extract the wall losses and seam losses. With

these losses characterized, a measurement of the loaded cavity gives an indirect measurement of the wafer

loss. To extract the wafer loss, we subtract the bare cavity losses from the total loss, given by

Q−1
loaded,tot = Q−1

wafer +Q−1
bare,tot = Q−1

wafer +Q−1
walls +Q−1

seam (7.5)

103



For high dielectric participations, we see that to distinguish losses of the cavity from the wafer a much

lower quality factor cavity can be used to achieve a similar sensitivity of a higher Q, lower participating

cavity. Previous attempts to separate bulk losses from surface losses in coplanar waveguide resonators

required isotropically etching into a silicon substrate [25]. This process is nontrivial to implement and does

not transfer to all substrates, especially sapphire which is difficult to etch at all, let alone isotropically.

7.1.1 Cavity Design

The split post design maximizes the electric field participation of the wafer in a high order quasi-TM

cylindrical mode, in analogy with the WGM boule experiments. This high order mode has multiple

antinodes distributed across the wafer, shown in Figure 7.1, probing local defects with higher sensitivity

than an isotropic TM01 or similar mode with cylindrical symmetry might.

(a) (b)

Figure 7.1 (a) Electric field and (b) magnetic field profiles for the target 5.210 GHz mode used to measure
the wafer loss.

The resulting electric field participation of this mode is sensitive to the boundary conditions between the

wafer and the posts. We studied this sensitivity by sweeping the air gap between the wafer and the posts in

simulation, anticipating that machining tolerances could limit the participation of the wafer. Figure 7.2 (a)

shows a region of relative insensitivity to post diameter, just less than the wafer diameter. In Figure 7.2

(b), we highlight the exponential dependence of wafer participation on the air gap between the posts and

wafer. This motivated a design that uses a seam along the H-plane, where the currents are perpendicular

to the seam, maximizing the geometric contribution of the seam loss [27] from (7.2).

In micromachined rectangular cavities with H-plane seams, Brecht [181] showed three orders of

magnitude improvement in the quality factor by introducing a quarter-wavelength “cavity cover choke.”

Quarterwave chokes have a long history of minimizing leakage currents at the interfaces of rectangular and

circular waveguides [26], as in Figure 7.3 (a).
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These chokes are achieved by introducing a circular trench λ/4 in depth and λ/4 away from the cavity

with a radial waveguide connecting the trench to the cavity. At the bottom of the trench the current is

maximized, creating a microwave short circuit, whereas at the top of the trench (the interface between the

mating faces of the cavity or waveguide) the current is minimized.

(a) (b)

Figure 7.2 Wafer participation design studies. Wafer participation as a function of (a) the post diameter
and (b) air-gap between the posts and the wafer. Dashed line in (a) indicates the diameter of wafer.
Circled points indicate the maximum participation and designed values. Shaded region in (b) shows the
95 % confidence interval on the exponential fit.

We employed a similar design to the “cavity cover choke” in the split post cavity (cover shown

in Figure 7.3 (b)). A cross section of the two cavity halves in Figure 7.3 (c) shows the size and location of

the λ/4 circular channel with respect to the posts. The design also ensures that the posts make contact

with wafers of various thicknesses. This feature potentially allows for extraction of losses from the wafer

surface by using wafers of different thicknesses from the same boule as in [4].

A raised ring structure makes contact with the bottom of the λ/4 groove before the outside of the

cavity walls connect, leaving a gap that is partially filled by an indium gasket (blue circles near the outside

edge of the cavity walls in Figure 7.3 (c)). We also used two indium gaskets, recessed in grooves on the post

surfaces, to prevent cracking of fragile wafers such as silicon and to adhere the wafer to the post surfaces.

7.1.2 External Coupling Simulation

To predict the range of coupling quality factors, we simulated the total quality factor as a function of

pin insertion depth into the cavity. In the absence of other losses, except for a vacuum impedance

boundary condition applied to the outside boundary of the coupling pin, the total quality factor Ql = Qc

varies with the pin insertion depth zpin.
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Figure 7.3 Quarter wave chokes in waveguides and cavities. (a) Waveguide choke based on [26]. Split post
cavity cover choke: (b) top view and (c) cross sectional side view with indium gasket (blue circles) and
wafer (red rectangle) positions.

Zero is referenced to the interior cavity wall, with positive values corresponding to in the cavity volume

and negative values recessed from the cavity volume, into the circular coupling pin hole. In Figure 7.4 the

exponential fit agrees with the reported trend by Reagor [144], where the coupling quality factor scales as

Qc ∝ e−2iβTM01
zpin , with βTM01 the complex propagation constant of the fundamental TM01 mode of the

circular waveguide of the coupling pin hole given by [144]

βTM0m =

√
k2 −

(
p0m

r0

)2

(7.6)

where the wavenumber k = ω/c, the radius of the coupling pin hole r0, and the m-th zero of the zero-th

order Bessel function of the first kind, J0(p0m) = 0 combine to set the cutoff frequency of the waveguide,

ωc = p0mc/r0. Frequencies below this cutoff are exponentially attenuated in the waveguide which leads to

the exponential decay of the coupling quality factor Qc. This exponential dependence on the pin length

gives coupling quality factors that span orders of magnitude, yet achieving critical coupling Qc ≈ Qi is

difficult with this coupling scheme. In practice, we set Qc to be within an order of magnitude of Qi, where

the error on the fit of Qi is tolerable [122], preferably an order of magnitude larger, such that the pin is

undercoupled to the cavity and Ql ≈ Qi and measurements of transmission through an SMA tee coupled to

the cavity port are sensitive to Qi by changes in the resonance linewidth.
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Figure 7.4 Coupling quality factor as a function of the pin insertion depth.

7.1.3 Wet Chemical Etching of Cavity

To reduce the London penetration depth of the cavity surfaces,37 which has been shown to give up to

an order of magnitude improvement in Qi [50, 144], we performed a wet chemical etch of the cavity

following the recipe outlined in [227]. The etching recipe is as follows. Before etching, titanium screws were

threaded into the tapped holes to prevent the etchant from modifying the threads. The etchant used does

not significantly etch titanium and screws are readily available from McMaster Carr and other hardware

vendors that are made of grade-2 titanium.38 Once the titanium screws are threaded into the tapped cavity

holes, a 6 inch glass container (shown in Figure 7.5 (a)) was filled with TranseneTM Type A aluminum

etchant (phosphoric-, nitric-, and acetic-acid with a proprietary surfactant) and heated on a hot plate inside

a fume hood until reaching a temperature of 50 ◦C. Then the cavity halves are added to the acid bath and

etched for 2 hours. After 2 hours, the cavity halves were removed from the bath and submerged into

deionized water. A fresh etchant was heated to 50 ◦C and the cavity was etched for another 2 hours. The

etch rate for this acid at 50 ◦C is ∼ 100 Å/s, removing ≈ 150µm of material from the surface of the cavity

halves [227]. Following the etch, the cavities were briefly submerged in deionized water, twice, then cleaned

in an ultrasonic cleaner with acetone, then isopropanol, each for 5 minutes, and dried with a nitrogen gun.

Michael Vissers at the National Institute of Standards and Technology (NIST), Boulder performed this

recipe on short notice and we are eternally grateful for his assistance in this chemical processing procedure.

37There is also evidence from subsurface transmission electron microscopy of 5N5 aluminum before and after etching indicating
that the surface oxide following the etch is more uniform and thinner than before the etch [182].

38Other groups use teflon screws and have observed similar white residues forming after etching, likely biproducts of the etch,
e.g. aluminum phosphates, nitrates, and acetates. Private communication with Srivatsan Chakram and Yao Lu.
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(a) (b) (c)

Figure 7.5 Wet chemical etching processing and results. (a) TranseneTM Type A etch of aluminum cavities
near the end of the second 2 hour etch, performed by Michael Vissers (MV) at the NIST, Boulder
cleanroom facility. (b) Top and bottom cavity halves, post etch. (c) Plastigauge measurement of post
separation following the etch.

7.1.4 Cavity Assembly, Mounting, and Wafer Preparation

Before measuring the bare or loaded cavity, we verified that the machining and assembly of the two

cavity halves led to an air gap close to the design goal of 500 µm. We used Plastigauge, a precision

polymer gauge used to measure clearances in automotive and other mechanical systems by squeezing the

polymer between two surfaces and measuring the clearance based on the spreading of the polymer

compared to a gauge provided by the manufacturer (see Figure 7.6).

(a) (b) (c)

Figure 7.6 Room temperature cavity mechanical tests and mounting. (a) Plastigauge measurement of split
post separation. (b) Mounting of two side polished, high resistivity silicon wafer. (c) Mounting of cavity on
copper offset bracket in a Bluefors LD 250 dilution refrigerator with a separate Lakeshore RX-102A-CD
ruthenium oxide (RuOx) temperature sensor mounted to the copper bracket.
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We controlled the coupling to the split post mode by changing the insertion depth of a pin connected to

an SMA jack. To seal the cavity along the H-plane of the high order TM mode between the posts, we used

1.0 mm diameter 4N (99.99 %) high purity indium wire, shown in Figure 7.7.

(a) (b)

Figure 7.7 SMA pin and indium seal. (a) Insertion of the coupling pin into the air gap between the post
and the cavity walls. (b) Indium seal made with 4N high purity indium wire, spool shown on the right.

7.2 Results

We report preliminary measurements of the unetched and etched bare cavity losses using experimental

and computational results to separate seam losses from wall losses. The differential loss extraction of bulk

silicon was performed with the etched cavity, marking the first measurement of a 3 inch wafer at millikelvin

temperatures and single photon powers.

7.2.1 Unetched Cavity Measurements

We initially measured the unetched cavity, as low temperature microwave characterization facilities

became available sooner than wet chemical etching access. The goal of these measurements was to set the

coupling quality factor, extract the internal quality factor of the measurement mode and other modes, and

estimate the surface resistance Rs and gseam. To extract the latter, we used a combination of simulation

and experimental data to fit the total, bare cavity loss to a linear model of the form of a line y = ax+ b

Q−1
bare, tot =

yseam

gseam
+Rs

pcond

Xs

Q−1
bare, tot

yseam
=

1

gseam
+Rs

pcond

Xsyseam
(7.7)

where y = Q−1
bare, tot/yseam, x = pcond/(Xsyseam), a = Rs, and b = g−1

seam. In Figure 7.8, we report the total

internal quality factors as a function of the simulated yseam values for four resonances in the unetched

cavity.
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The line is a least squares fit to the model in (7.7) and the shaded region is the confidence interval on

the fit, bounded by ±σ, where σ is the standard error from the covariance matrix returned by the fitting

routine. From the fit we extracted the surface resistance and seam conductances: 6× 10−5 Ω and

gseam = (3± 2)× 103 S/m. The values of yseam are fixed by the geometry, leaving expected improvements

from the etch to reductions in Rs and pcond (by smaller λL), or increases in gseam.

gseam=
SPC Al4N Expected
Post Etch

Figure 7.8 Preliminary data showing four modes from the SPC before wet chemical etching. Left: Al4N,
etched and Al Alloy (6061) results from [27] to give bounds on the expected improvement in Qi, tot after
etching. Black dashed lines indicate constant gseam values and the gray dotted line shows the value for the
bulk loss of high resistivity silicon (2.5× 10−7) as estimated by Woods et al. [25]. Open blue circles and
black arrows show best case, expected improvements in Qi following the SPC etch. Right: representative
transmission data of the 5.210 GHz split post resonance.

Previous etches of high purity aluminum superconducting cavities have shown a significant reduction in

the London penetration, decreasing pcond and the wall loss contribution [50]. Using the extracted values of

Rs and gseam we estimated the contributions to Q−1
walls and Q−1

seam for each mode, and found that all four

modes were dominated by seam loss. To improve the estimate of these contributions to the fit of Rs and

gseam, we added constraints in the form of penalties with high weights for fits that lead to large deviations

from the sum of the seam and wall loss contributions from the experimental, total losses for each mode.

We summarize these results in Table 7.1, with the wall and seam loss summing to slightly more than the

total measured losses. The differences in mode losses are attributed to the differences in yseam, with the

two lower frequency modes occupying the space between the posts and the higher frequency modes existing

in the vacuum between the posts and the outer cavity walls.
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(a) (b)

Figure 7.9 Temperature dependent fractional frequency shift in (a) and fractional loss in (b) for the 7.875
GHz resonance of the unetched bare cavity.

We suspect that a miscalculation in the location and depth of the λ/4 choke led to higher than desired

yseam in the lower frequency modes and lower than expected yseam in the higher frequency modes. We

performed temperature sweeps of the four resonances studied in Table 7.1, with only the highest frequency

mode exhibiting the expected Mattis-Bardeen theory temperature dependence [50, 66, 139]. The fractional

frequency shift and quality factor are given by

δf

f
=
f(T )− f(0)

f(0)
=
Xs(T )−Xs(0)

Xs(0)
(7.8)

δ
1

Qi
=

1

Qi(T )
− 1

Q−(0)
(7.9)

where Rs = Re {Zs} and Xs = Im {Zs} are the surface resistance and reactance of the superconductor and

Zs is the surface impedance. See Section 1.5 for a detailed description of the Mattis-Bardeen theory,

linking the resonant frequency and inverse quality factor shifts to universal properties of conventional

BCS-type superconductors. In Figure 7.9, we report the temperature sweep measurements of the 7.875

GHz resonance. The Mattis-Bardeen fits with the transition temperature Tc fixed for pure aluminum at 1.2

K and the conductive participation pcond fixed by simulation. We extracted London penetration depths

between 3.8 and 6.1 nm, much smaller than the theoretical value for pure aluminum, 16 nm, and smaller

yet than what was extracted by Reagor et al. [50] from etched 5N5 aluminum coaxial stub cavities (65 and

55 nm, respectively).
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If we relax the constraint on the critical temperature and conductive participation, fitting those

parameters along with the London penetration depth, the fraction frequency shift gives a London

penetration depth of 43 nm, Tc = (1.1± 0.7) K, and pcond = 5.5× 10−5. This fit more closely agrees with

an expected λL on the order of tens of nm, although a similar fitting procedure applied to the fractional

loss still yields a smaller λL = 2.3 nm (see Figure 7.10).

Table 7.1 Unetched cavity estimated wall and seam losses.

Mode Frequency [GHz] pcond yseam Q−1
walls Q−1

seam Q−1
bare, tot

4.657 9.78× 10−6 7.75× 10−3 1.9× 10−7 2.4× 10−6 (2.3± 0.4)× 10−6

5.2101 1.15× 10−5 1.11× 10−2 2.0× 10−7 3.4× 10−6 (2.7± 0.3)× 10−6

6.551 1.33× 10−5 3.21× 10−3 1.5× 10−7 9.8× 10−7 (1.90± 0.02)× 10−6

7.875 1.25× 10−5 2.2× 10−3 1.5× 10−7 6.7× 10−7 (5.4± 0.2)× 10−7

(a) (b)

Figure 7.10 Temperature dependent fractional frequency shift (a) and (b) fractional loss with λL, Tc, and
pcond as free parameters.

7.3 Discussion and Conclusions

The sheer number of superconducting cavity measurements [4, 182, 223, 228] to extract the bulk

dielectric losses of substrates at single photon powers and millikelvin temperatures speaks to the progress

in the superconducting qubit field in reducing other losses to such a degree that bulk losses will soon limit

their performance. Thus, developing high throughput measurement techniques to screen substrates from

multiple vendors, different manufacturing processes, and materials is critical to continue improving qubit

coherence. We emphasize the high throughput and low barrier to entry as differentiating features of this

measurement approach compared to the others.
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The cavity was machined by a precision, online machine shop, Zero Hour Parts, and required a wet

chemical etch to achieve high quality factors to be sensitive enough to measure low loss sapphire wafers.

Future iterations of the cavity could be fabricated from lower purity Al 6061 and diamond turn polished as

in [182]. The high participation in the wafer lends itself to future studies of surface defect layers in

sapphire identified by McLellan et al. [215] and A/B comparisons of Nb2O5 and Ta2O5 grown on a wafer

with Nb deposited on it.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

8.1 Conclusion

In this thesis, we developed numerical modeling approaches for superconducting 2D and 3D tunable

couplers relevant to superconducting quantum computing systems. The 2DEG coupler presented in

Chapter 2 was a unique, direct tunable capacitive coupling element, evidenced by the patent [229]. An

experimental demonstration of such a coupler remains to be seen in the literature, with a notable

experiment performing parametric gates mediated by a gatemon driven with an oscillating gate bais rather

than a tunable coupler. We emphasize that the modeling effort presented in our work is substantial on its

own, combining multiphysics simulations of the semiclassical semiconductor physics of the 2DEG with full

electromagnetic simulations and lumped element circuit models, including parasitic capacitances of the

three terminal device. The super-semi field as well as those working to integrate cryogenic complementary

metal oxide semiconductor (cryo-CMOS) electronics with superconducting circuits stand to benefit from

similar modeling efforts.39

The work presented in Chapter 4 is a significant departure from the conventional capacitive tunable

couplers in the literature. To date, there are no experimental or theoretical proposals, apart from an

experiment where a diode shorts two electrically isolated low quality-factor rectangular cavity halves

in [231], using galvanic coupling in 3D. As we found in our modeling of a two post coupler design, there are

challenges in both simulating and physically realizing such systems. Galvanic coupling, at least of the

variety that we studied in thesis, poses a high seam conductance requirement to mitigate seam loss

introduced by the interface between the cavity structures and the external SQUID circuit. A forthcoming

experimental effort to realize such a tunable coupler would benefit the quantum information and particle

detection communities, such as the Axion Dark Matter eXperiment (ADMX) search team [232]. AMDX

uses a large cavity that is tuned in resonance with candidate dark matter that weakly couple to the

electromagnetic field in the cavity by using a dielectric tuning rod to scan the resonance frequency of the

cavity. Electronic tuning schemes that encompass a wider range of frequencies and cavities that are free of

mode crossings could be a significant boost to future axion searches at higher frequencies.

39There is also significant overlap with our modeling efforts and the spin qubit community. Accurately modeling the spatial
profile of their gate-defined quantum wells, as well as the microwave electromagnetic environment, plays a critical role in
coordinating the sophisticated base-band pulse sequences required to perform gates on their triplet spin qubits [230].
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The field overlap integral method developed to support the galvanic coupler modeling has far-reaching

applications as well. By reformulating the problem of extracting bare and parametric rates to integrals

calculated offline, that is outside of the Ansys HFSS solver, we can estimate these rates with potentially

higher accuracy at a lower computational cost compared to similar calculations performed with the HFSS

fields calculator. Similar calculations can also give estimates of the loss rates due to coupling to spurious

modes in the packaging of 2D qubits [39] and parasitic resonances in 3D systems.

Our measurements of 2D CPW resonators expanded the understanding of the correlations between

materials and losses. In particular, we reported the first A/B comparison study of the effects of grain size

in tantalum thin films in Chapter 6, albeit in a restricted regime. The null result, that is a lack of

difference in loss observed between the two films, is significant in that we can exclude grain size in that

regime as a significant contributor to loss in those films. By combining microwave loss measurements with

room temperature materials characterization techniques and cryogenic transport measurements, our work

is an example of where the field is moving to systematically link materials properties with device

performance [215].

The work in the hydrides study, presented in Section 5.2.1 is a prime example of connecting materials

with microwave losses. By carefully accounting for the number and phase of niobium hydrides precipitated

following fluoride-based wet chemical etchants, we can tie increases in power-independent losses to the

increased presence of hydrides. A heuristic solution that balances hydride formation with oxide removal, a

short duration BOE dip, is another outcome from the study, now backed by the evidence of our microwave

measurements.

Lastly, the split post cavity design is a unique contribution of this thesis. Namely, no measurements at

millikelvin temperatures and single photon powers have been performed on full wafers until this study. The

strength of this technique is two-fold. First, it offers a complementary measurement approach to extract

the bulk losses of dielectric substrates at the wafer scale. Second, we anticipate that we will be sensitive to

variations in wafers of different boules, manufacturers, and pre-deposition processing such as annealing to

better quantify the contributions of those processes to the total loss of superconducting devices.

8.2 Outlook

At the advent of this thesis (ca. 2018), the field of superconducting circuit and cavity quantum

computing was rapidly growing. There were multiple commercial and academic groups with tens of qubits

starting to become accessible through cloud computing and the next year the Google group would

demonstrate quantum advantage in a random sampling problem [37].
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Some five years later, the commercial players (IBM, Google, Rigetti) continue to push forward with

transmon-based, planar qubits with improved coherences and some modifications to connectivity and

control on the order of a few hundred physical qubits, with some indications that the surface error

correction code at least works in principle – logical error rates improve with increasing size of the surface

code or number of physical qubits [56].

A biased perspective might suggest that the work done by 3D superconducting cavity-based bosonic

error correction community [58, 113, 220] supersedes the former, as the size and complexity of their logical

qubits is dwarfed by the resource requirements of standard surface code estimates [57]. Some smaller

companies are taking this approach, investing in higher coherence, fewer qubit systems with error

correction built-in from the start. Autonomous error correction was also demonstrated with an equally

hardware-efficient implementation: the very small logical qubit star code using a single tunable coupler

driven with oscillating fields [233, 234]. The thread that links these works and the large scale systems is the

enabling technology of tunable couplers, namely parametrically activated, high fidelity couplers.

This thesis presented designs for two couplers, one in the super-semi domain, compatible with existing

transmon and gatemon qubits, and the other in the 3D cavity space. The design and analysis tools used to

study these couplers have broad applicably in their respective domains, with the field overlap integral

method potentially spanning both the 2D and 3D design space. There are related developments in circuit

quantum acoustodynamics (cQAD) field40 that extend the EPR method in similar ways as the FOI,

calculating couplings between the electromagnetic field and the strain field in coupled finite element

simulations [235].

The second half of this thesis focused on the large space of materials loss mechanisms in

superconducting qubits as elucidated by superconducting CPW and 3D cavity measurements. Our

contributions to the body of knowledge surrounding the materials parameters in 2D superconducting qubit

fabrication included the influence of grain size in Ta thin films on c-axis sapphire41 and various attempts to

cap Nb resonators with other superconductors, normal metals, and amorphous silicon. Even the most

routine measurements, transmission microwave measurements of superconducting resonators, are open to

refinement and debate. As we noted in Section 1.5.2, the point distribution of frequencies used to extract

the losses from fits of the transmission frequency responses is an area of active research [122].

40cQAD is the mechanical analog of cQED, where the microwave resonator is replaced by a mechanical resonator and the
nonlinear element is a transmon qubit. The resulting Hamiltonian, dispersive readout, and control are similar to cQED, with
applications in quantum information, transduction, and sensing.

41The additional qualifiers are both necessary and a nod to the precision of this line of work, where statements about a particular
superconductor or crystallographic orientation of a substrate does not necessarily transfer to all other superconducting thin
films and substrates or even the same substrate with a different orientation.
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With the emergence of 3D cavity measurements, there is still low hanging fruit in characterizing new

materials, especially birefringement dielectrics [4, 224] and wafers. These techniques can stand alone as

novel metrological systems as well as complement existing methods to construct accurate loss budgets of

superconducting resonators and qubits. The use of high throughput measurement systems such as high-Q

cavities and multiplexed resonator readout [236] also stands to benefit both small academic groups and

industry, where fast feedback between measurement and fabrication can accelerate improvements in device

performance. We expect other opportunities for adjacent fields such as the high energy superconducting

particle detector and single flux quantum digital logic communities to interface with superconducting

qubits for readout, loss metrology, and loss mitigation on the path to fault tolerant digital quantum

computing and near term, practical demonstrations of quantum advantage.
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Alexei Kitaev, Paul V. Klimov, Andrey R. Klots, Alexander N. Korotkov, Fedor Kostritsa,
John Mark Kreikebaum, David Landhuis, Pavel Laptev, Kim-Ming Lau, Lily Laws, Joonho Lee,
Kenny Lee, Brian J. Lester, Alexander Lill, Wayne Liu, Aditya Locharla, Erik Lucero, Fionn D.
Malone, Jeffrey Marshall, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen,
Anthony Megrant, Bernardo Meurer Costa, Xiao Mi, Kevin C. Miao, Masoud Mohseni, Shirin
Montazeri, Alexis Morvan, Emily Mount, Wojciech Mruczkiewicz, Ofer Naaman, Matthew Neeley,
Charles Neill, Ani Nersisyan, Hartmut Neven, Michael Newman, Jiun How Ng, Anthony Nguyen,
Murray Nguyen, Murphy Yuezhen Niu, Thomas E. O’Brien, Alex Opremcak, John Platt, Andre
Petukhov, Rebecca Potter, Leonid P. Pryadko, Chris Quintana, Pedram Roushan, Nicholas C. Rubin,
Negar Saei, Daniel Sank, Kannan Sankaragomathi, Kevin J. Satzinger, Henry F. Schurkus,
Christopher Schuster, Michael J. Shearn, Aaron Shorter, Vladimir Shvarts, Jindra Skruzny, Vadim
Smelyanskiy, W. Clarke Smith, George Sterling, Doug Strain, Marco Szalay, Alfredo Torres, Guifre
Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Theodore White, Cheng Xing, Z. Jamie
Yao, Ping Yeh, Juhwan Yoo, Grayson Young, Adam Zalcman, Yaxing Zhang, Ningfeng Zhu, and
Google Quantum AI. Suppressing quantum errors by scaling a surface code logical qubit. Nature, 614
(7949):676–681, Feb 2023. ISSN 1476-4687. doi: 10.1038/s41586-022-05434-1.

[57] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes:
Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012. doi:
10.1103/PhysRevA.86.032324.

[58] Arne L. Grimsmo and Shruti Puri. Quantum Error Correction with the Gottesman-Kitaev-Preskill
Code. PRX Quantum, 2:020101, Jun 2021. doi: 10.1103/PRXQuantum.2.020101.

[59] Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Phys. Rev. A,
64:012310, Jun 2001. doi: 10.1103/PhysRevA.64.012310.

[60] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home. Encoding a
qubit in a trapped-ion mechanical oscillator. Nature, 566(7745):513–517, Feb 2019. ISSN 1476-4687.
doi: 10.1038/s41586-019-0960-6.

[61] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, N. E. Frattini, V. V. Sivak,
P. Reinhold, S. Puri, S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi, and M. H. Devoret.
Quantum error correction of a qubit encoded in grid states of an oscillator. Nature, 584(7821):
368–372, Aug 2020. ISSN 1476-4687. doi: 10.1038/s41586-020-2603-3.

[62] Dany Lachance-Quirion, Marc-Antoine Lemonde, Jean Olivier Simoneau, Lucas St-Jean, Pascal
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junctions flux qubit couplings. Applied Physics Letters, 119(22), 12 2021. ISSN 0003-6951. doi:
10.1063/5.0069530. 222601.

[174] A. Dutta, A. P. M. Place, K. D. Crowley, X. H. Le, Y. Gang, L. V. H. Rodgers, T. Madhavan, N. P.
Khedkar, X. Gui, Y. Jia, L. Baker, A. Head, I. Jarrige, A. Hunt, I. Waluyo, A. Barbour, C. Weiland,
S. Hulbert, M. Liu, A. L. Walter, R. J. Cava, A. A. Houck, and N. P. de Leon. Study of material loss
channels in tantalum microwave superconducting resonators. In Quantum 2.0 Conference and
Exhibition, page QTu2A.25. Optica Publishing Group, 2022. doi:
10.1364/QUANTUM.2022.QTu2A.25.

131



[175] Joel I-J. Wang, Megan A. Yamoah, Qing Li, Amir H. Karamlou, Thao Dinh, Bharath Kannan,
Jochen Braumüller, David Kim, Alexander J. Melville, Sarah E. Muschinske, Bethany M. Niedzielski,
Kyle Serniak, Youngkyu Sung, Roni Winik, Jonilyn L. Yoder, Mollie E. Schwartz, Kenji Watanabe,
Takashi Taniguchi, Terry P. Orlando, Simon Gustavsson, Pablo Jarillo-Herrero, and William D.
Oliver. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and
qubits. Nature Materials, 21(4):398–403, Apr 2022. ISSN 1476-4660. doi:
10.1038/s41563-021-01187-w.

[176] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions: With Formulas, Graphs, and
Mathematical Tables, chapter 9, pages 358–361. Applied mathematics series. Dover Publications,
1965. ISBN 9780486612720.

[177] Chaitali Joshi, Wenyuan Chen, Henry G. LeDuc, Peter K. Day, and Mohammad Mirhosseini. Strong
Kinetic-Inductance Kerr Nonlinearity with Titanium Nitride Nanowires. Phys. Rev. Appl., 18:064088,
Dec 2022. doi: 10.1103/PhysRevApplied.18.064088.

[178] Isaac L. Chuang and Yoshihisa Yamamoto. Simple quantum computer. Phys. Rev. A, 52:3489–3496,
Nov 1995. doi: 10.1103/PhysRevA.52.3489.

[179] D. H. Auston, A. A. Ballman, P. Bhattacharya, G. J. Bjorklund, C. Bowden, R. W. Boyd, P. S.
Brody, R. Burnham, R. L. Byer, G. Carter, D. Chemla, M. Dagenais, G. Dohler, U. Efron, D. Eimerl,
R. S. Feigelson, J. Feinberg, B. J. Feldman, A. F. Garito, E. M. Garmire, H. M. Gibbs, A. M. Glass,
L. S. Goldberg, R. L. Gunshor, T. K. Gustafson, R. W. Hellwarth, A. E. Kaplan, P. L. Kelley, F. J.
Leonberger, R. S. Lytel, A. Majerfeld, N. Menyuk, G. R. Meredith, R. R. Neurgaonkar, N. G.
Peyghambarian, P. Prasad, G. Rakuljic, Y.-R. Shen, P. W. Smith, J. Stamatoff, G. I. Stegeman,
G. Stillman, C. L. Tang, H. Temkin, M. Thakur, G. C. Valley, P. A. Wolff, and C. Woods. Research
on nonlinear optical materials: an assessment. Appl. Opt., 26(2):211–211, Jan 1987. doi:
10.1364/AO.26.000211.

[180] Helin Zhang, Chunyang Ding, D. K. Weiss, Ziwen Huang, Yuwei Ma, Charles Guinn, Sara Sussman,
Sai Pavan Chitta, Danyang Chen, Andrew A. Houck, Jens Koch, and David I. Schuster. Tunable
inductive coupler for high fidelity gates between fluxonium qubits. arXiv e-prints, art.
arXiv:2309.05720, September 2023. doi: 10.48550/arXiv.2309.05720.

[181] Teresa Brecht. Micromachined Quantum Circuits. PhD thesis, Yale University, 2017.

[182] Chan U Lei, Suhas Ganjam, Lev Krayzman, Archan Banerjee, Kim Kisslinger, Sooyeon Hwang, Luigi
Frunzio, and Robert J. Schoelkopf. Characterization of Microwave Loss Using Multimode
Superconducting Resonators. Phys. Rev. Appl., 20:024045, Aug 2023. doi:
10.1103/PhysRevApplied.20.024045.

[183] G. Calusine, A. Melville, W. Woods, R. Das, C. Stull, V. Bolkhovsky, D. Braje, D. Hover, D. K.
Kim, X. Miloshi, D. Rosenberg, A. Sevi, J. L. Yoder, E. Dauler, and W. D. Oliver. Analysis and
mitigation of interface losses in trenched superconducting coplanar waveguide resonators. Applied
Physics Letters, 112(6):062601, 02 2018. ISSN 0003-6951. doi: 10.1063/1.5006888.

[184] A. Melville, G. Calusine, W. Woods, K. Serniak, E. Golden, B. M. Niedzielski, D. K. Kim, A. Sevi,
J. L. Yoder, E. A. Dauler, and W. D. Oliver. Comparison of dielectric loss in titanium nitride and
aluminum superconducting resonators. Applied Physics Letters, 117(12):124004, 09 2020. ISSN
0003-6951. doi: 10.1063/5.0021950.

132



[185] Suhas Ganjam, Yanhao Wang, Yao Lu, Archan Banerjee, Chan U Lei, Lev Krayzman, Kim
Kisslinger, Chenyu Zhou, Ruoshui Li, Yichen Jia, Mingzhao Liu, Luigi Frunzio, and Robert J.
Schoelkopf. Surpassing millisecond coherence times in on-chip superconducting quantum memories
by optimizing materials, processes, and circuit design. arXiv e-prints, art. arXiv:2308.15539, 8 2023.
doi: 10.48550/arXiv.2308.15539.

[186] McRae, Corey Rae. Indium Thin Films in Multilayer Superconducting Quantum Circuits. PhD
thesis, University of Waterloo, 2018. URL http://hdl.handle.net/10012/12803.

[187] Carlos G. Torres-Castanedo, Dominic P. Goronzy, Thang Pham, Anthony McFadden, Nicholas
Materise, Paul Masih Das, Matthew Cheng, Dmitry Lebedev, Stephanie M. Ribet, Mitchell J.
Walker, David G. Wetten, Cameron J. Kopas, Jayss Marshall, Ella Lachman, Nikolay Zhelev,
James A. Sauls, Joshua Y. Mutus, Vinayak P. Dravid, Corey Rae H. McRae, Michael J. Bedzyk, and
Mark C. Hersham. Formation and losses of hydrides in superconducting niobium resulting from wet
chemical processing. Manuscript in preparation, to be submitted to Advanced Materials, 2023.

[188] Cameron J. Kopas, Ella Lachman, Corey Rae H. McRae, Yuvraj Mohan, Josh Y. Mutus, Ani
Nersisyan, and Amrit Poudel. Simple coplanar waveguide resonator mask targeting metal-substrate
interface. arXiv e-prints, art. arXiv:2204.07202, April 2022. doi: 10.48550/arXiv.2204.07202.

[189] A. A. Murthy, J. Lee, C. Kopas, M. J. Reagor, A. P. McFadden, D. P. Pappas, M. Checchin,
A. Grassellino, and A. Romanenko. TOF-SIMS analysis of decoherence sources in superconducting
qubits. Applied Physics Letters, 120(4):044002, 01 2022. ISSN 0003-6951. doi: 10.1063/5.0079321.

[190] F. Barkov, A. Romanenko, and A. Grassellino. Direct observation of hydrides formation in
cavity-grade niobium. Phys. Rev. ST Accel. Beams, 15:122001, Dec 2012. doi:
10.1103/PhysRevSTAB.15.122001.

[191] J.-M. Welter and F. J. Johnen. Superconducting transition temperature and low temperature
resistivity in the niobium-hydrogen system. Zeitschrift für Physik B Condensed Matter, 27(3):
227–232, Sep 1977. ISSN 1431-584X. doi: 10.1007/BF01325532.

[192] U Laudahn, A Pundt, M Bicker, U v. Hülsen, U Geyer, T Wagner, and R Kirchheim.
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APPENDIX A

TUNABLE CAPACITOR APPENDICES

A.1 III-V Ternary Alloy Interpolation Formulas

Following the standard linear and quadratic interpolation schemes for III-V ternary alloys AxB1-xC,

with composition parameter x and in terms of experimentally measured values of their binary constituents,

AB and BC, we have the lattice constant a, energy gap E, and effective mass at the Γ point mΓ∗ as [237]

aAxB1-xC = xaAC + (1− x)aBC, (A.1)

EAxB1-xC = xEAC + (1− x)EBC + x(1− x)EAB, (A.2)

mΓ∗
AxB1-xC

= xmΓ
AC + (1− x)mΓ

BC + x(1− x)mΓ
AB. (A.3)

Similarly, the hole effective masses follow from a quadratic interpolation scheme of the AB, AC binary

components as computed from a spherical band approximation of the valence band edge [237]

mp,dos =
(
m

3/2
lh +m

3/2
hh

)2/3

, (A.4)

mp,c =
m

5/2
lh +m

5/2
hh

mp,dos
, (A.5)

mp,c,AxB1-xC = xmp,c,AC + (1− x)mp,c,BC, (A.6)

mp,dos,AxB1-xC = xmp,dos,AC + (1− x)mp,dos,BC. (A.7)

We recognize that the spherical band approximation may not apply to the III-V materials in our study, but

it gives an estimate for density of states and conduction band effective masses that are inputs to the

COMSOL Semiconductor Module materials models.

To estimate the conduction band offsets between the InxAl1-xAs and InxGa1-xAs layers, we followed

another interpolation scheme that computes the absolute conduction band edges Ec using experimentally

measured parameters of InAs, AlAs, and GaAs[238]

Ec = Ev,avg +
∆0

3
+ Eg + ∆Ehy

c , (A.8)

∆Ec = EBc − EAc , (A.9)

where Ev,avg is the average valence band edge, ∆0 is the spin-orbit splitting in the absence of strain, Eg is

the band gap energy, and ∆Ehy
c is the shift of the conduction band edge due to hydrostatic strain.
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These parameters are calculated from the following expressions with coefficients Cij read-off from Table

3 compiled by Krijn [238]

Ev, avg =

2∑
i=1

Ci0(Ev,avg)xi, (A.10)

∆0 =

2∑
i=1

Ci0(∆0)xi, (A.11)

∆Ehy
c =

∆a(x)

a(x)

1∑
i=0

Ci0(∆Ehy
c )xi, (A.12)

∆a(x) = a0 − a(x). (A.13)

A.2 Charge–Charge Interaction Matrix Element Derivation

C12

C13 C23

C33

C11 C22

(c)

(a) (b)

Figure A.1 Coupler circuit models. (a) The 2DEG coupler compact representation with a single gate and a
pair of transmon qubits compared with (b) the simplified circuit used in the derivation of the charge-charge
interaction matrix in the main text. (c) Parasitic capacitance circuit model of the coupler and two
transmons; capacitances taken from (2.14) and (2.17).

Starting from the two transmon circuit coupled by a voltage-controlled Josephson junction (our 2DEG

coupler) in figure Figure A.1 (b), with phases ϕ1, ϕ2, ϕ3 referring to the left, right, and coupling junctions,

respectively, we have [170]

ϕ1 − ϕ2 + ϕ3 = − 2π

Φ0
Φext (A.14)
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In (A.14), Φext is the flux threading the loop formed by the three Josephson junctions as in a typical

flux qubit circuit. For a finite Φext, the potential energy U is given by

U(ϕ) =
∑
j

EJj (1− cosϕj)

= EJ1
(1− cosϕ1) + EJ2

(1− cosϕ2)

+ EJ3
(1− cos(ϕ2 − ϕ1 − 2πΦext/Φ0)), (A.15)

with the signs on the phases following figure Figure A.1 (b), preserving the conventions chosen in. [170] We

order the phases in a single column vector as

ϕ =

(
ϕ1

ϕ2

)
. (A.16)

Setting Φext = 0, we compute the kinetic energy T by using the Josephson equation relating the voltages at

nodes with k = {1, 2}, Vk = (Φ0/2π)ϕ̇k and the definition of T in terms of ϕ̇k

T =
1

2

(
C1V

2
1 + C2V

2
2 + C3V

2
3

)
=

1

2

(
Φ0

2π

)2 (
C1ϕ̇

2
1 + C2ϕ̇

2
2 + C3 (ϕ̇2 − ϕ̇1)

2
)

=
1

2

(
Φ0

2π

)2

ϕ̇TCϕ̇, (A.17)

and reading off the capacitance matrix

C =

(
C1 + C3 −C3

−C3 C2 + C3

)
. (A.18)

Relating the total capacitances (both the intrinsic junction and external capacitance, commonly referred to

as CΣ [41]) shunting the junctions, C1, C2, to the anharmonicities extracted from the EPR calculations, we

have, from the asymptotic expressions derived by Koch et al. [1]

Ck =
e2

2EC
' − e2

2αk
(A.19)

and we take C3 = C12(Vg), the gate voltage-dependent capacitance across the 2DEG coupler.
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The classical Lagrangian L and Hamiltonian H associated with the kinetic and potential energies

above, then read [170]

L(ϕϕϕ, ϕ̇̇ϕ̇ϕ) = T − U

=
1

2

(
Φ0

2π

)2

ϕ̇ϕϕTCϕ̇ϕϕ−
∑
j

EJj (1− cosϕj) (A.20)

H = PT ϕ̇ϕϕ− L

=
1

2
QTC−1Q + U(ϕϕϕ) (A.21)

Pj =
∂L
∂ϕ̇j

=

(
Φ0

2π

)2∑
k

Cjkϕ̇k, Q =
2π

Φ0
P (A.22)

We take the form of the quantized Hamiltonian to be the same as the classical one in (A.21) with classical

variables promoted to operators, and identify the charge-charge matrix elements as e2[C−1]ij/2. Similarly,

we write the Lagrangian and identify the capacitance matrix corresponding to the parasitic capacitance

model given by the circuit in Fig. Figure A.1 (c) as

L =
1

2

(
Φ0

2π

)2 [
(C1 + C11)ϕ̇2

1 + (C2 + C22)ϕ̇2
2

+ C33ϕ̇
2
3 + C12(ϕ̇2 − ϕ̇1)2

+ C13(ϕ̇3 − ϕ̇1)2 + C23(ϕ̇2 − ϕ̇3)2
]
− U(ϕ) (A.23)

C =

 C̃11 −C12 −C13

−C12 C̃22 −C23

−C13 −C23 C̃33

 , (A.24)

where C̃11 = C1 + C11 + C12 + C13, C̃22 = C2 + C22 + C12 + C23, and C̃33 = C13 + C23 + C33.
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APPENDIX B

BLACK BOX HAMILTONIAN AND CORRESPONDENCE WITH EPR

In Section 1.3.1, we wrote the linear part of the black box Hamiltonian

H0 =
∑
p

(
4EC,pN

2
p +

1

2
EL,pϕ

2
p

)
(B.1)

in terms of number and phase variables and stated that we could quantize the Hamiltonian as a sum of

harmonic oscillators. Here, we will give more details of those conversions and discuss the relationship

between zero point phase fluctuations and energy participation ratios.

The commutation relations of the phase and number operators follow from the flux and charge

commutation relations, equating flux to the position and charge to the momentum of particle of a

harmonic oscillator as

[Φm, Qn] = ih̄δmn (B.2)[(
Φ0

2π

)
ϕm, 2eNn

]
= ih̄δmn(

Φ0

2π

)
2e [ϕm, Nn] = ih̄δmn

[ϕm, Nn] = iδmn (B.3)

with the right hand side of Eq. (B.3) agreeing with the dimensionless operators ϕm and Nn on the left

hand side.

The Hamiltonian in Eq. (1.26), is equivalent to the sum of harmonic oscillators with frequencies

ωp = (LpCp)
−1/2, and we can express the flux and charge operators in terms of bosonic raising and

lowering operators ap, a
†
p [103]

Φp = ΦZPF
p

(
ap + a†p

)
, Qp = −iQZPF

p

(
ap − a†p

)
(B.4)

where the zero point flux and charge fluctuations are given by

ΦZPF
p =

√
h̄ωpLp

2
, QZPF

p =

√
h̄

2ωpLp
(B.5)
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Substituting Eqs. (B.4), (B.5) into Eq. (1.26), gives

H0 =
∑
p

(
− 1

2Cp
(QZPF

p )2(ap − a†p)2 +
1

2Lp
(ΦZPF

p )2(ap + a†p)
2

)
=
∑
p

h̄ωp(a
†
pap + 1/2) (B.6)

To calculate the zero point phase fluctuations 〈ϕ2
m〉 of the m-th mode, we invoke the Virial theorem,

where the inductive energy is equal to half the total energy which is in turn equal to the capacitive energy,

Eind = Ecap =
1

2
Etot (B.7)

⇒ Eind =
1

2

∑
p

EL,p〈ψm
∣∣ϕ2
p

∣∣ψm〉 =
1

2
〈ψm |H0|ψm〉 (B.8)

Taking the vacuum expectation value of Eq. (B.8), by replacing |ψm〉 = |0〉m, gives

1

2
EL,m〈ϕ2

m〉 =
1

4
h̄ωm

⇒ 〈ϕ2
m〉 =

h̄ωm
2EL,m

(B.9)

Repeating the procedure for the zero point number fluctuations, 〈N2
m〉 of the m-th mode, we find

Ecap =
∑
p

4EC,p〈ψm
∣∣N2

p

∣∣ψm〉 =
1

2
〈ψm |H0|ψm〉,

4EC,m〈N2
m〉 =

1

4
h̄ωm

⇒ 〈N2
m〉 =

h̄ωm
16EC,m

(B.10)

We will refer back to these expressions in the following sections, with the energy participation ratios

from [103] in terms of the quantities obtained from the black box analysis. Comparing the expressions for

the inductive and capacitive EPRs in Section 1.3.4 with the black box expressions for the phase and

Cooper number zero point fluctuations, we find

〈ϕ2
m〉 =

h̄ωm
2EL,m

= 〈ϕ2
mj〉 =

pLmj h̄ωm

2EJ,j

⇒ pLmj =
EJ,j
EL,m

=

(
Φ0

2π

)2
L−1
J,j(

Φ0

2π

)2
L−1
m

=
Lm
LJ,j

=
1
2LJ,jI

2
k(LJ,j)

1
2µ0

∫
V

H∗k(x, LJ,j) ·Hk(x, LJ,j) d3x + 1
2LJ,jI

2
k(LJ,j)

(B.11)

〈N2
m〉 =

h̄ωm
16EC,m

= 〈N2
mj〉 =

pCmj h̄ωm

16EC,j

⇒ pCmj =
EC,j
EC,m

=

e2

2CJ,j

e2

2Cm

=
Cm
CJ,j

=
1
2CJ,jV

2
k (LJ,j)

1
2ε0
∫
V

E∗k(x, LJ,j) ·Ek(x, LJ,j) d3x + 1
2CJ,jV

2
k (LJ,j)

(B.12)
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In both the inductive and capacitive EPRs, we arrive at ratios of the mode inductances and

capacitances referenced to the Josephson junction inductances and capacitances. These ratios agree with

those stated in [95] and derived by Manucharyan et al. [239]. The ratios of inductive energy and capacitive

energy stored in the junction relative to the total inductive and capacitive energy are classical quantities

that are calculated with the eigenmode solver in HFSS.
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APPENDIX C

ANSYS HFSS EIGENVALUE PROBLEM

This appendix gives a derivation of the eigenvalue problem solved by Ansys HFSS as outlined in the

documentation of the software. We use the terminology commonly used in the finite element community to

construct the weak form of the Helmholtz equation and discuss the consequences of the impedance

boundary condition to the eigenvalue problem.

C.1 Maxwell’s Equations and Helmholtz Equation

The goal of this section is to start with Maxwell’s equations, derive the Helmholtz equation. Later, we

will apply Galerkin discretization to the Helmholtz equation and arrive at the eigenvalue problem solved by

HFSS in terms of basis and testing functions. Maxwell’s equations, in SI units, read

∇∇∇ ·D = ρ (C.1)

∇∇∇ ·B = 0 (C.2)

∇∇∇×E = −∂B

∂t
(C.3)

∇∇∇×B = µε
∂E

∂t
+ µJtot (C.4)

where E = E(x, t) is the electric field, D = εE is the electric displacement field, B = B(x, t) is the

magnetic flux density, and Jtot = Jd + Js, Js = Js(x, t) is the source current density, and µ = µrµ0 and

ε = εrε0 are the magnetic permeability and electric permittivity of the medium where the fields are being

solved. Taking the curl of Faraday’s law in (C.3) and substituting (C.4), we find

∇∇∇×∇∇∇×E = −µε∂
2E

∂t2
− µ∂Js

∂t
(C.5)

Separating time t and space x = (x, y, z) variables as E = Re
{
E(x)eiωt

}
, Js = Re

{
Js(x)eiωt

}
, using the

electric engineering notation i =
√
−1, and identifying the magnetic field in terms of the magnetic flux

density, H = µ−1B, we rewrite (C.5) as

∇∇∇×∇∇∇×E(x) = ω2µεE(x)− iωµJs(x) (C.6)

with the common eiωt factors dropped from the above expressions.
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Dividing (C.6) by µr and identifying the magnitude of the wave vector k0 = ω2µ0ε0 = ω2/c2, we have

Helmholtz’s equation with a source term Js(x)

∇∇∇× 1

µr
∇∇∇×E(x)− k2

0εrE(x) = −iωµ0Js(x) (C.7)

C.2 Galerkin Testing

To construct a linear system of equations, HFSS tests the partial differential equation in (C.7) by

multiplying by some testing function Wn and integrating over all vacuum and dielectric regions in the

volume V

∫
V

Wn(x) ·
[
∇∇∇×∇∇∇ 1

µr
×E(x)− k2

0εrE(x)

]
d3x = −iωµ0

∫
V

Wn(x) · Js(x) d3x (C.8)

In this scheme, the electric fields are expanded in terms of basis functions Wm(x) from the same family as

the testing functions. Both the testing and basis functions are curl-conforming, meaning that they preserve

the continuity of the tangential component of the electric field on the boundaries of the elements being

solved on; as expected for physical electric fields. Substituting E(x) =
∑
m vmWm(x) into (C.8), we find

∑
m

vm

∫
V

Wn(x) ·
[
∇∇∇× 1

µr
∇∇∇×Wm(x)− k2

0εrWm(x)

]
d3x = −iωµ0

∫
V

Wn(x) · Js(x) d3x (C.9)

In the interest of deriving the eigenvalue problem, we set Js = 0 and rearrange (C.9)

∑
m

vm

∫
V

Wn(x) ·
[
∇∇∇× 1

µr
∇∇∇×Wm(x)

]
d3x−

∑
m

vmk
2
0εr

∫
V

Wn(x) ·Wm(x) d3x = 0 (C.10)

Av − λBv = 0 (C.11)

Anm =

∫
V

Wn(x) ·
[
∇∇∇× 1

µr
∇∇∇×Wm(x)

]
d3x (C.12)

Bnm = εr

∫
V

Wn(x) ·Wm(x) d3x (C.13)

λ = k2
0 (C.14)

If the basis functions Wn are orthonormal with their normalization built-in to their definition, then Bmn

reduces to the Kronecker delta δmn or the identity matrix, and the generalized eigenvalue problem in

(C.11) becomes the standard eigenvalue problem. This is an important point, as the form of the equation

being solved by HFSS dictates the form of the inner product for eigenvectors of different mode numbers.

Moreover, the magnetic fields H(x) = i (ωµ)
−1∇∇∇×E have inherently lower accuracy than the electric

fields, being a quantity computed by differentiation rather than integration.
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To add an impedance boundary condition to this scheme, we consider the surface impedance Zs on the

surface SJ describing a junction of the form

Etan = ZS (n×Htan) (C.15)

where n is the unit normal vector pointing out of the surface SJ . The tangential components of the fields

are given by Etan = E× n and Htan = H× n. Substituting these expressions into (C.15) and multiplying

by the basis functions Wn then integrating over the surface SJ gives

∫
SJ

Wn(x) · (E(x)× n) d2x =

∫
SJ

Wn(x) · (n× (H(x)× n)) d2x (C.16)

∑
m

vm

∫
SJ

{
Wn(x) ·

[
Wm(x)× n +

Zs
jωµ

n× ((∇∇∇×Wm(x))× n)

]}
d2x = 0 (C.17)

This integral expression then becomes part of the left hand side matrix A in (C.11), implying that

information about the junction boundary condition is already encoded in the eigenfunctions vm,k that

constitute the eigenmode electric and magnetic fields.

Taking two particular values for λ = k2, k′2 (we drop the subscript 0 here for brevity) and express the

inner product of the electric field solutions at k and k′ in terms of the eigenvectors vk and vk′

∫
V

Ek(x) ·Ek′(x) d3x =
∑
mn

vm,kvn,k′

∫
V

Wm(x) ·Wn(x) d3x

= vTkBvk′ (C.18)

Similarly the magnetic field inner product follows from its definition above in terms of the curl of the

electric field

∫
V

Hk(x) ·Hk′(x) d3x = − 1

ωkωk′µ2

∑
mn

vm,kvn,k′

∫
V

(∇∇∇×Wm(x)) · (∇∇∇×Wn(x)) d3x

= vTk B̃vk′ (C.19)

where we have labeled the integral scaled by the prefactor −1/µ2ωkωk′ as B̃. To evaluate the matrix B̃, we

return to the integral involving the curl-curl term in (C.12) and integrate by parts [240]

∫
V

Wn(x) · [∇∇∇×∇∇∇×Wm(x)] d3x =

∫
V

(∇∇∇×Wn(x)) · (∇∇∇×Wm(x)) d3x

−
∫
S

((∇∇∇×Wm(x))× n) ·Wn(x) d2x (C.20)
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Using the identity ((∇∇∇×Wm)× n) ·Wn = ((∇∇∇×Wm)× n) · ((Wn × n)× n), we have on the left hand

side of the dot product a term that is proportional to the tangential magnetic field on the boundary and

another term that is proportional to the cross product of the tangential part of the testing function Wn

and the unit normal n. If either of these terms vanish, then B̃ ≡ A and the orthonormality condition on the

magnetic fields is 〈Hk, Hk′〉 = vTkAvk′ , otherwise it depends on the sum of the surface term above and A.

In general, A includes the boundary conditions and the curl-curl operator, written explicitly for the

case of the impedance boundary condition and using the integration by parts result from above

Amn =

∫
V

(∇∇∇×Wn(x)) · (∇∇∇×Wm(x)) d3x

−
∫
S

((∇∇∇×Wm(x))× n) ·Wn(x) d2x

+

∫
SJ

{
Wn(x) ·

[
Wm(x)× n +

Zs
jωµ

n× ((∇∇∇×Wm(x))× n)

]}
d2x (C.21)

This result highlights the difference in orthogonality properties of the electric and magnetic field eigenmode

field solutions. The electric field eigenfunctions depend on the boundary conditions, but their

orthonormality condition does not, whereas the magnetic field orthonormality condition is a function of the

boundary condition terms. Without access to the explicit form of Wm(n), we do not assume that the Ek

and Hk overlap integrals introduced in Chapter 3 evaluate to exactly zero at different mode numbers and

same junction inductances. This leads to slightly more complicated, yet calculable expressions for the

coefficients of interest to design of 3D tunable couplers other monolithic microwave structures.
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APPENDIX D

SUPPLEMENTAL MATERIAL OF GRAIN SIZE IN LOW SUPERCONDUCTING TA THIN FILMS

ON C-AXIS SAPPHIRE

D.1 Ta Grain Size for T = 600 ◦C Deposition

We used atomic force microscopy in tapping mode to study the grain size distribution of the tantalum

films deposited at a substrate temperature of T = 600 ◦C. A typical topography is shown in Figure D.1,

with an average grain size of G = 1732± 92 nm2.

400 nm

Figure D.1 Typical surface topography recorded with an atomic force microscope of the tantalum film
deposited at a substrate temperature of T=600 ◦C.

D.2 Wide Scans

We measured the broadband responses of the devices over multiple cooldowns to compare the variability

of the background ( Figure D.3). We measured S21, the microwave transmission coefficient, through each

device’s transmission line with 65,001 points and 100 kHz IF bandwidth to resolve most of the resonator

dips over the 4–8 GHz range. Repeated measurements of the same devices show significant similarities, as

shown by the two blue curves (SG2) and the two green curves (LGS1). Broad resonances can be attributed

to a low-Q spurious environmental mode, which is present for all but LGS2 (purple curve).
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D.3 Extracted Resonator Parameters

Table D.1 summarizes the parameters extracted from fitting the TLS and power-independent loss of

each resonator. The uncertainties are the 95% confidence intervals returned by a least squares fitting

routine.

Figure D.2 compares the loss metrics Fδ0
TLS with δLP, δHP, and δLP − δHP. There is excellent

agreement between Fδ0
TLS and δLP − δHP, where all measurements lay along the line of 1:1 correlation. The

mismatch between Fδ0
TLS and δLP highlights that one cannot extract the intrinsic TLS loss with the low

power loss alone; the power-independent loss is necessary to accurately compute TLS loss. The scatter in

the center plot indicates a lack of correlation between power-independent loss and TLS loss.

Figure D.2 Correlation of loss metrics. Device-induced intrinsic TLS loss Fδ0,TLS as a function of three
other loss metrics: low power loss δLP minus power-independent loss δHP, δHP, and δLP. Solid black line
indicates a 1:1 relationship between metrics.
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Figure D.3 Background characterization at -100 dBm. Transmission curves for SGS1 cooldown 2 (light
blue) and 4 (blue), LGS1 cooldown 1 (light green) and 3 (green), LGS2 cooldown 4 (purple) and SGS2
cooldown 4 (red) are plotted.
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Table D.1 Parameters extracted from cryogenic microwave measurements of Ta on Al2O3 coplanar waveguide (CPW) resonators. Values are given
with their 95% confidence intervals where available. f0: resonance frequency. 1/Qi,HP: inverse high power internal quality factor. Fδ0

TLS:
resonator-induced intrinsic TLS loss. 1/Qi,LP: inverse low power internal quality factor. 1/Qc: inverse coupling quality factor at high power.
Surface treatment labels correspond to small grain size (SGS*) and large grain size (LGS*) devices.

LGS1 5.704 0.05 ± 0.01 1.73 ± 0.02 1.9 ± 0.3 4.658 ± 0.004 0.14 ± 0.02 0.197 ± 0.005
Cooldown 1 6.112 0.057 ± 0.005 1.69 ± 0.04 1.5 ± 0.1 5.702 ± 0.002 0.19 ± 0.06 0.24 ± 0.02

LGS1 4.531 0.037 ± 0.008 1.84 ± 0.02 1.89 ± 0.06 1.871 ± 0.004 1.8 ± 0.2 0.237 ± 0.005
Cooldown 3 4.915 2.86 ± 0.02 2.38 ± 0.02 5.3 ± 0.2 2.649 ± 0.009 0.34 ± 0.03 0.195 ± 0.002

LGS2 4.501 0.10 ± 0.02 1.73 ± 0.03 1.79 ± 0.1 1.199 ± 0.004 0.4 ± 0.1 0.175 ± 0.009
Cooldown 4 4.884 0.48 ± 0.03 5.01 ± 0.05 5.6 ± 0.4 1.46 ± 0.01 0.17 ± 0.04 0.151 ± 0.006

5.267 0.110 ± 0.009 2.38 ± 0.05 2.5 ± 0.2 1.892 ± 0.004 0.10 ± 0.04 0.18 ± 0.01
5.661 0.19 ± 0.02 1.98 ± 0.02 2.1 ± 0.3 3.28 ± 0.01 1.0 ± 0.2 0.212 ± 0.008
6.068 0.17 ± 0.01 1.73 ± 0.02 1.9 ± 0.1 2.088 ± 0.005 3.6 ± 0.8 0.21 ± 0.01
6.459 0.13 ± 0.02 1.60 ± 0.03 1.8 ± 0.2 6.14 ± 0.03 1.4 ± 0.4 0.21 ± 0.01
6.844 1.70 ± 0.02 1.75 ± 0.02 3.4 ± 0.3 5.71 ± 0.02 1.0 ± 0.2 0.207 ± 0.008
7.250 0.19 ± 0.02 2.28 ± 0.03 2.4 ± 0.4 3.76 ± 0.01 0.13 ± 0.03 0.201 ± 0.008

SGS1 4.488 0.22 ± 0.01 1.41 ± 0.03 1.56 ± 0.08 1.184 ± 0.004 1.5 ± 0.3 0.236 ± 0.008
Cooldown 2 5.682 5.92 ± 0.01 1.68 ± 0.03 8 ± 1 1.631 ± 0.002 0.23 ± 0.05 0.24 ± 0.01

6.476 2.535 ± 0.006 1.64 ± 0.03 4.3 ± 0.4 1.663 ± 0.002 0.32 ± 0.07 0.26 ± 0.01
SGS1 4.487∗ 0.38 ± 0.02 2.16 ± 0.09 3.3 ± 0.7 1.244 ± 0.008 9 ± 7 0.27 ± 0.06

Cooldown 4 4.902 0.21 ± 0.01 2.31 ± 0.03 2 ± 1 1.85 ± 0.01 15 ± 3 0.20 ± 0.01
5.267 0.128 ± 0.010 2.64 ± 0.04 2.5 ± 0.4 1.68 ± 0.01 3.4 ± 0.9 0.29 ± 0.02
5.681∗ 5.86 ± 0.06 2.06 ± 0.06 7.8 ± 1.0 1.576 ± 0.004 0.5 ± 0.2 0.25 ± 0.02
6.037 0.395 ± 0.007 1.28 ± 0.02 1.7 ± 0.3 1.659 ± 0.004 0.9 ± 0.2 0.28 ± 0.02
6.476∗ 1.96 ± 0.01 1.77 ± 0.03 3.8 ± 0.7 1.522 ± 0.006 0.9 ± 0.3 0.27 ± 0.02
6.833 0.29 ± 0.02 2.52 ± 0.08 2.9 ± 0.04 1.99 ± 0.02 0.13 ± 0.06 0.21 ± 0.02
7.245 0.39 ± 0.01 1.75 ± 0.04 2.1 ± 0.3 1.269 ± 0.008 0.9 ± 0.2 0.29 ± 0.02

SGS2 4.499 0.65 ± 0.01 2.5 ± 0.2 2.9 ± 0.5 2.106 ± 0.006 0.020 ± 0.018 0.21 ± 0.02
Cooldown 4 4.907 0.49 ± 0.01 3.28 ± 0.08 3.9 ± 0.3 2.502 ± 0.007 0.210 ± 0.090 0.21 ± 0.02

5.292 0.537 ± 0.007 1.93 ± 0.03 2.4 ± 0.2 3.789 ± 0.005 1.0 ± 0.3 0.27 ± 0.02
6.074 0.93 ± 0.02 2.13 ± 0.03 2.9 ± 0.3 6.609 ± 0.008 0.20 ± 0.05 0.26 ± 0.01
6.460 0.54 ± 0.02 1.52 ± 0.02 2.1 ± 0.4 5.91 ± 0.01 0.16 ± 0.04 0.20 ± 0.01
6.591 1.52 ± 0.03 3.11 ± 0.06 4 ± 1 54.9 ± 0.2 0.10 ± 0.03 0.24 ± 0.02
7.196 0.96 ± 0.02 1.92 ± 0.05 2.9 ± 0.5 4.25 ± 0.03 0.04 ± 0.02 0.21 ± 0.02
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D.4 Microwave Setup

In Figure D.5, we give a schematic of the microwave wiring in our Janis JDry 250 dilution refrigerator.

A Keysight PNA N5222B vector network analyzer (VNA) transmits signals down input lines A and B, with

60 dB of discrete attenuation supplied by XMA 2082-6418-dB-CRYO cryogenic attenuators. We estimate

an additional 10 dB of attenuation from internal and external line losses.

Two Quinstar QCE-060400CM00 circulators separate input and output paths outside of two six-to-one

Radiall 583 microwave switches. Additional directionality on the output lines is achieved with two pairs of

20 dB Quinstar QCI-080090XM00 isolators. Two LNF-LNC4 8C high electron mobility transistor (HEMT)

amplifiers with average noise temperatures of 1.5 K and gain of 40 dB, mounted at the 3 K stage, set the

noise floor of our experiments. Room temperature low noise amplifiers (Miteq AFS4-04001200-48-20P-4),

provide an additional 30 dB of gain on the receiver side. DC-blocks (Mini-Circuits BLKD-183-S+)

decouple DC currents from the input and output lines at room temperature.

D.5 Resistance Measurements

To collect resistance data, both chips were bonded with aluminum wirebonds on independent four-wire

measurement setups. The measurement board was connected to the cold stage of a modified HPD 103

model cryostat. This cryostat consists of a two-stage pulse tube and a two-stage adiabatic demagnetization

refrigerator. After loading the samples, but before cooling down, an external mu-metal shield was put in

place to reduce the presence of external magnetic fields within the measurement setup. The room

temperature resistances of both chips were then taken. Resistance was tracked over several minutes to

measure noise. Then the cryostat was pumped out and the compressor turned on to cool to base

temperature overnight.

The next morning with the cold FAA stage at ∼3 K, the chips were now both superconducting. Then

turning off the compressor, while tracking the resistance of one chip as the temperature slowly increased to

∼4.5 K, going through the superconducting transition of Ta.

We use an AC “tickle” current provided by a Linear Research LR-700 to measure the resistance. This

minimizes any heating once the device being measured goes normal, preventing a runaway thermal load on

the sample stage. Measurements at room temperature and at ∼4 K were taken with the following LR700

settings chosen to minimize noise for these chips: 1 second filter, 20 µV excitation, 2 Ω range. Figure D.4

shows the two resistance curves as a function of temperature.
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To extract the normal resistance Rn and superconducting transition temperature Tc, we used an

empirical expression to fit the transition region (inset of Figure D.4) of the form

R(T ) =
1

2
Rn [tanh ((T − Tc)/∆T ) + 1] (D.1)

where ∆T is a free parameter that corresponds to the width of the transition.
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Figure D.4 Temperature sweep of resistance of large grain size (LGS) and small grain size (SGS) films.
Inset shows similar transition regions for both films and similar Tc’s.
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DUT

Figure D.5 Microwave wiring diagram. Passive and active components at each stage of a Janis JDry250
cryogen-free dilution refrigerator used to measure the devices reported in this work. Radiall six-to-one
switches, labeled A and B, allow for multiple samples to be measured on one pair of lines during a single
cooldown. Red lines indicate the signal path to measure transmission S21 through the devices under test
(DUT): LGS1, LGS2, SGS1, and SGS2 resonator chips.
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APPENDIX E

PERMISSIONS FOR COPYRIGHTED MATERIAL

E.1 Copyright Permissions for Chapter 1

• Figure 1.5 in Section 1.2.4 is adapted from [2] under the license provided in the supplement to this

thesis.

• Figure 1.6 in Section 1.2.4 is adapted from [1] under the license provided in the supplement to this

thesis.

• Figure 1.7 in Section 1.3.1 is reproduced from [3] under the license provided in the supplement to this

thesis.

• Figure 1.14 in Chapter 1.4 is constructed from three figures, reproduced from [9] in (a), [16] in (b),

and [12] in (c), licensed under Creative Commons CC BY 4.0 license. This license grants a

worldwide, royalty-free, irrevocable license to reproduce and share the licensed material.

• Figure 1.16 in Section 1.5.2 is based on [17] under the license provided in the supplement to this

thesis.

• Figure 1.20 in Section 1.5.3 is reproduced from [19] under the license included in the supplement.

E.2 Copyright Permissions for Chapter 2

• The entirety of Chapter 2 is reproduced from Quantum Science and Technology, licensed under

Creative Commons CC BY 4.0 license. This license grants a worldwide, royalty-free, irrevocable

license to reproduce and share the licensed material [48]. The other authors in [48] give their

permission to reproduce this work in the supplement to this thesis.

E.3 Copyright Permissions for Chapter 5

• Figure 5.1 and Figure 5.2 are reproduced from Physical Review Applied [25] under the license

provided in the supplement.

E.4 Copyright Permissions for Chapter 6 and Appendix D

• The entirety of Chapter 6 and Appendix D are reproduced from Journal of Applied Physics [196]

under the license provided in the supplement. The other authors in [196] give their permission to

reproduce this work in the supplement to this thesis.
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