Simulation of Superconducting Qubit
Devices

W orkshop on Microwave Cavities and Detectors
for Axion Research

Nick Materise

January 10, 2016

LLNL-PRES-676622

B Lawrence Livermore
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

National Laboratory



Outline

= Definition of a qubit

= Non-linearity in superconducting qubits and Josephson
junctions

= Cavity QED and Circuit QED

= Black box Circuit Quantization

= Types of Superconducting Qubits

= Physical realization of superconducting circuits

= Simulating RF components of qubits in COMSOL
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Qubits

= A quantum “bit” or two level system / effective two level system
with addressable energy levels

= [n some cases, a qubit can be treated as a harmonic oscillator
with non-linearly spaced levels

= Level spacing due to anharmonicity from non-linearity(ies),
allows for designs that minimize leakage to higher excited states
of the qubit(s)
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Source of Non-linearity: Josephson Junction

= DC Josephson Effect — B. Josephson, 1962*

— Non-zero periodic current, due to tunneling Cooper Pairs across an SIS
(superconductor-insulator-superconductor) junction

— The current varies periodically in the phase difference across the junction,
acting as a macroscopic quantum variable

— Josephson Current and Voltage Equations

1B.D. Josephson, Phys.Lett. 1, 7 (1962)
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Source of Non-linearity: Josephson Junction

= DC Josephson Effect — B. Josephson, 1962*

— Non-zero periodic current, due to tunneling Cooper Pairs across an SIS
(superconductor-insulator-superconductor) junction

— The current varies periodically in the phase difference across the junction,
acting as a macroscopic quantum variable

— Josephson Current and Voltage Equations

I =1I.sinp Y1(91) Y2(@2)

B h dop B do 4
 2edt dt
Y =1 — 2 Superconductors Insulator

1B.D. Josephson, Phys.Lett. 1, 7 (1962)
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IV Characteristics of Josephson Junctions

= The DC current in an SIS junction is given at zero temperature?

2 1/2 B
Iac = Im {ja(w)}, Iae ~ sgn(w)Ko (( ’ ! ) ) . w| § = M

72 — 52 TA+A T AL+ A,

= where K is the zero-th order modified Bessel function of the first kind, A, A,
are the superconducting gap energies of the superconducting leads

2N.R. Werthamer, Phys. Rev. 147, 255 (1966)
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IV Characteristics of Josephson Junctions

Ioc = Im{jo(w)}, Igqe ~ sgn(w)Ky (

Normalized DC Current, |

= The DC current in an SIS junction is given at zero temperature?

xZr

2

—1
22 — 52

) T A Ay

A — A
A+ A,

= where K is the zero-th order modified Bessel function of the first kind, A, A,
are the superconducting gap energies of the superconducting leads

Normalized IV Curve for Al-Al,O5-Al Josephson Junction
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Josephson Junction Circuit Model

= Josephson Junctions can be approximated by linear, passive

circuit elements shunting a non-linear inductance L,

— RCSJ Model (Resistance and Capacitive Shunted Junction)3

— Useful model for including simple non-linear behavior in classical
simulations, e.g. COMSOL

— From Kirchhoff's current law, the current flowing through each element in
the circuit is given by

3D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Josephson Junction Circuit Model

= Josephson Junctions can be approximated by linear, passive

circuit elements shunting a non-linear inductance L,

— RCSJ Model (Resistance and Capacitive Shunted Junction)3

— Useful model for including simple non-linear behavior in classical
simulations, e.g. COMSOL

— From Kirchhoff's current law, the current flowing through each element in
the circuit is given by

V dV , I
I:R—n—l—c'fg—l—fct%lﬂ(fp) T R,Q C =

|
AV

C Ly Ey

3 D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007."
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Circuit Quantum Electrodynamics (cQED)

= Use Josephson Junctions as a source of non-linearity to realize
macroscopic quantum systems

= Borrow concepts from the optics community, e.g. cavity QED to
implement familiar systems

= Atom in a resonant cavity is the most basic model
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Cavity QED and Model Hamiltonians

= Cavity QED: two level atomic system trapped in a mirrored, high
finesse resonant cavity
= Follows the Jaynes-Cummings Hamiltonian3
H= hw.(a'a+1/2) + hw,d./2 + hg(a'6_ +aoc)
| — N, e’ | —

EM field quantization spin-1/2 atom  atom-cavity interaction

3D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis,
Yale University, 2007.
4R.J. Schoelkopf and S. M. Girvin, Nature, vol. 451, pp. 664—

669, 02 2008.
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Cavity QED and Model Hamiltonians

= Cavity QED: two level atomic system trapped in a mirrored, high
finesse resonant cavity
= Follows the Jaynes-Cummings Hamiltonian3
H= hw,(a'a+1/2) + hw,d,/2 + hg(a'6_ +aoy)
| — N, e’ | —

EM field quantization spin-1/2 atom  atom-cavity interaction

2g = Vacuum Rabi Frequency

r = Cavity Decay Rate

D :

v = Transverse Decay Rate \/
Tiransit = Time for atom to leave cavity
i
3D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, transit
Yale University, 2007. Atom trapped in a cavity with photon emission, atomic-
*R.J. Schoelkopf and S. M. Girvin, Nature, vol. 451, pp. 664~ cavity dipole coupling, and atom transit time shown?.

669, 02 2008.
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Cavity QED and Circuit QED, from optics to RF

Cavity QED Circuit QED

Two Level Atom Artificial atom, truncated to two levels
High Finesse Cavity High Q Cavity / Planar Resonator

Arbitrarily large transition dipole
moment, e.g. strong coupling regime

1/K/1/y Tl/TZ

Small transition dipole moment

= Large dipole moment couples the qubit well to the cavity in
superconducting qubits: coupling strength and energy levels
are tunable by design or in situ

L Lawrence Livermore National Laboratory N L'% 13
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Cavity QED and Circuit QED, Device Comparison

Resonator, Qubit Frequencies w, W, / 2n ~ 50 GHz ~5 GHz
Transition Dipole Moment d/ea, ~1 ~ 104
Relaxation Time T; 30ms 60 ps
Decoherence Time T, ~1 ms ~10-20 ps

= Large dipole moment couples the qubit well to the cavity in
superconducting qubits: coupling strength and energy levels

are tunable
= Trapped atoms in cavities have longer coherence times, not

tunable, weakly coupled to the cavity for measurement

3 D. . Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
> H. Paik, et al., Phys. Rev. Lett. 107, 240501 (2011)
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Quantizing Simple Circuits

= Simplest model is an LC-resonator treated as a quantum harmonic
oscillator with classical Lagrangian, Hamiltonian, and quantized

operators3 ¢ E
L6.d) = tog - & \ />
(6:9) = 50" — o= L3 Lc E,
E,
E,

3D. . Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Quantizing Simple Circuits

= Simplest model is an LC-resonator treated as a quantum harmonic
oscillator with classical Lagrangian, Hamiltonian, and quantized

operators3 ¢ E
¢ \ />
z:(qsﬁc;s) S0 - o7 L3 Lc EE2
H=_—+ ¢—2 E 1
QC’ 0

3D. . Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Quantizing Simple Circuits

= Simplest model is an LC-resonator treated as a quantum harmonic
oscillator with classical Lagrangian, Hamiltonian, and quantized

operators3 . ¢ \ " E
“i0.9)- log -2 . —
Q.,)Q ::C E1
e oA -
H%H—@+— 6.Q| =in

3D. . Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Quantizing Simple Circuits

= Simplest model is an LC-resonator treated as a quantum harmonic
oscillator with classical Lagrangian, Hamiltonian, and quantized

operators3 ¢ E
£(6.6) = 30 - & " /E,
’ 2 2L I, - C 2

2 2 T E1
g_ 9 E

20 2L 0

~ 2 -

S SRR A
H=H=5z+51 [‘ﬁ”Q} = ih
A hoo .. hwC . .
QO = m({l—f—{l-l-) q= —1 (;F (CL—CIT)
w? =1/(LC)

3D. . Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Quantizing Simple Circuits

= Simplest model is an LC-resonator treated as a quantum harmonic
oscillator with classical Lagrangian, Hamiltonian, and quantized

operators3 ¢ E
£(6.6) = 30 - & " /E,
’ 2 2L I, - C 2

2 2 T E1
g_ 9 E

20 2L 0

~ 2 -

S SRR A
H=H=5z+51 [‘ﬁ”Q} = ih
A hoo .. hwC . .
QO = m({l—f—{l-l-) q= —1 (;F (CL—CIT)
w? =1/(LC)

— H =|hw (a'a+1/2)

3D. . Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.

L Lawrence Livermore National Laboratory N l'&’m 19
LLNL-PRES-676622

e B dear Koy Ao sk



Black box Circuit Quantization

= |dea is to extract all linear components of the qubit and

microwave circuitry by synthesizing an equivalent passive

electrical network

= The network is obtained by computing the S-parameters of a
device using FEM software (COMSOL, HFSS) and converting them

to an impedance, Z (j!)
Z=(1+8(1-5)"

(1 )

1

Y

—O0 O

E; 4

Z(w)
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Black box Circuit Quantization—Vector Fit

= The impedance function is fit to a pole-residue expansion
following the Vector Fit procedure, a least squares fit to a rational

function of the form®
M

R
Z(s)=y ——+d+es
S~ Sk
= From this form, there are two synthesis approaches with two

guantization schemes
— Lossy Foster approach (approximate circuit synthesis)’
— Brune exact synthesis approach?

6 B. Gustavsen et al., IEEE Tran on Power Delivery, 14(3):1052-1061, Jul 1999
7 F. Solgun et al. Phys.Rev.B 90, 134504 (2014)
8 S. E. Nigg et al. Phys.Rev.Lett. 108, 240502 (2012)
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Black box Circuit Quantization—Lossy Foster

= Taking the constantterm d = 0 and excluding the poleats =1 or
setting e = 0 leaves the rational function with poles and residues

Ry, S,/
R
k
Z(S)=Z , Sk =&k +Jwk, R =ak+ b
kzlS—Sk

= Expanding the k-th component of Z(s) in partial fractions and

taking the low loss limit, » ., b, é 1
R N R 201 S

Z1(8) = ~
+(5) s—sk S—s§ 82 —2s+ws
wf-ch:S
Qk . o
— | Z.(8) = RLC Tank Circuit!
k(8) sz—i—%s—l—w%

7 F. Solgun et al. Phys.Rev.B 90, 134504 (2014)
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Black box Circuit Quantization—Lossy Foster

= Main result of the Lossy Foster treatment is a set of uncoupled
harmonic oscillators as a series of RLC circuits

= Circuit elementsin terms of the real and imaginary components of
the poles and residues’

1
2
Wi, = T Qr = wp R Ch, = —wk/%m Ry = —&k/gk
LUK
0=, O
Vo
R1 RZ R3 RM
EEAYAVAY NMA_ N EEVAVAVANEES
LM 2888 Ly |, L e |
C1H CZH (:3H CNI[I

7 F. Solgun et al. Phys.Rev.B 90, 134504 (2014)
9 J. Bourassa et al. Phys.Rev.A 86, 013814 (2012)
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Black box Circuit Quantization—Lossy Foster

= From the circuit elements, a lossless Hamiltonian is obtained by
taking the limit R,—>1 8,

= The LC circuits are quantized as harmonic oscillators giving the
linear Hamlltonlan8

Hy = Zhwk (akak -+ 1/2)

= A non-linear Hamlltonlan accounts for the qubit and its coupling
to the harmonic modes

~2

M
ﬁﬂl =E; (1 — COS - SO_) Z \/2wka (&k T dl)

k=1

8 S.E. Nigg et al. Phys.Rev.Lett. 108, 240502 (2012)
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Types of Superconducting Qubits: Charge Qubits

= Early Charge qubit — Cooper Pair Box c
(CPB) Cn= 8
— Cooper pairs tunnel across the junction

leading to a charge number operator Ep, Ep,
— Typical implementations include a resonator § ; —_ Ec, Ec,
that plays the role of a cavity
— Hamiltonian in the charge basis for single
Josephson junction? = =

- N 2 1
HCPB :4EC (N—HQ/Z) +§EIZ(|H><H+1|+|R+1><H|)
— “Split” CPB including RLC resonator and

coupling® 4EcCyV (ZV.G + V) 4cCyVN

. . 2
Hepptrie = 4E¢ (N - ng/Q) + » _ ‘

b - L " L -
il

CPB term junction capacitance RLC-CPB coupling

3 D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Types of Superconducting Qubits: Charge Qubits

= Early Charge qubit — Cooper Pair Box (CPB)

— Rotating wave approximation (RWA) and Jaynes-Cummings Hamiltonian
« Approximate number and charge number operators as Pauli operators?

N=x6./2, (In)(n+1]+n+1)(n|) =&,

* Expand voltage operator,V, apply RWA to couplingterm and substitute the qubit
plasma frequency, !, = (L,C))*/2

o fhw, . AEcC,VN
V=5 @+al), ——t—=omg(a+al)e,

€
2hg (a+ a') 6, ~ hg (a6, +a'6_)

Heppirre = hwea'a + hwyb,/2 + hg (64 +a'6_)

3 D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Types of Superconducting Qubits: Charge Qubits

= Early Charge qubit — Cooper Pair Box (CPB)

— Rotating wave approximation (RWA) and Jaynes-Cummings Hamiltonian
« Approximate number and charge number operators as Pauli operators?

N=xo./2, (In)(n+1]+n+1)(n|) = o,

» Expand voltage operator,V, apply RWA to couplingterm and substitute the qubit
plasma frequency, !, = (L,C))*/2

o fhw, . AEcC,VN
V=5 @+al), ——t—=omg(a+al)e,

€
2hg (a+ a') 6, ~ hg (a6, +a'6_)

Heppirre = hwea'a + hwyb,/2 + hg (64 +a'6_)

**Reclaims Jaynes-Cummings Hamiltonian

3 D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Types of Superconducting Qubits: Transmon

= Transmon, an improved charge qubit
— Shunt capacitor reduces sensitivity to charge noise
— Flatter energy levels, weakly anharmonic
— Hamiltonian, qubit + resonator3

. 0?2
Hirans = _4EC(9_{]02 — Ejcos(p) Cip=/ ﬁg
52 {102 {pd . |l
N—4Eca—&—E.;(1—7+E+@(W) R|LLC .
11
— C,
1 (8FE¢& HA b pt § ber
Y = V2 U E; ( T ) P1

=55 () 6-9) o7

3 D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Types of Superconducting Qubits: Transmon

= Transmon, an improved charge qubit
— Hamiltonian in the energy basis, anharmonic oscillator3

R o Er 7 o4
isans = ey (610 +1/2) - - (b+0t)

— Including resonator and coupling term follow a similar treatment as the
CPB qubit

— Kerr and cross Kerr terms may be included when expanding the fourth
powerinb

3 D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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Types of Superconducting Qubits: Flux Qubits

= Flux qubit
— Flux threading a loop is quantized; DCSQUID
biases the qubit
— Persistent current | forms in the
superconducting loop
— Hamiltonian, with fixed gap A% 11

H = I,00(®/®g — (n+1/2)) 6, + hAé,
= Capacitively shunted flux qubit
— Shunt the flux qubit with a large capacitor,

similar to the transmon for charge qubits
— Hamiltonian, with resonator!?

Cin =

R

A V4

@)

S

L

E
" J

)
)

d
I

H = hwy (9p) 6,/2 + hw, (aTa +1/2) + hy (@) (aTa +1/2) 6.,

10M.J. Schwarz et al. New Journal of Physics 15 (2013) 045001
117.p. Orlando, Phys.Rev.B 60, 15398 (1999)
12F Yei et al, Nature Communications 7 (2016)
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Physical Designs: CPW + CPB = Cavity + Atom

= Implemented as Josephson Junction capacitively coupled to

transmission line resonator (coplanar waveguide, CPW)

— Transmission Line Resonator ™ Cavity
— 2D Planar or 3D cavity couples qubit to drive and readout

= Dipole moment, d, in terms of the magnitude of the applied voltage
V,, CPW conductor width w, electric field magnitude E,, and
coupling of the qubit to the resonator*3

1
hg = (ew) EVD = dEy

13 A, Blais etal., Phys. Rev. A 69, 062320 (2004) Coplanar waveguide resonator and lumped circuit!?
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Physical Designs: Transmon

= Similar in design to CPB with the following modifications
— Shunt capacitance implemented with an interdigitated capacitor or sufficiently
large gap of exposed substrate between conductors

e P— = 9 k"ﬂ"‘e—vmw
Acc.V Spot Magn Det WD ——— + 5 pm
110.00 kV 1.0 5743x TLD 4.1 Yale

Micrograph of resonator and transmon reproduced from3

3 D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
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COMSOL RF Simulation Building Blocks

= Model systems used to develop more accurate descriptions of
the microwave circuits that constitute a qubit

= Model Progression

1. Microstrip transmission line

2. Coplanar Waveguide (CPW)

L Lawrence Livermore National Laboratory
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COMSOL RF Simulation Building Blocks

= Model systems used to develop more accurate descriptions of
the microwave circuits that constitute a qubit

= Model Progression

1. Interdigitated Capacitor (IDC)

2. Meanderline resonator

Lawrence Livermore National Laborator \/ 34
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Microstripline Resonator

= Electric field norm and characteristic
im pedance’ ZO freq(12)=3.75E9 Multislice: Electric field norm (V/m)

x103
= Characteristic impedance is given by

87 5.98h
ZO = 1]11
Ve + 1.41 0.8w +t

where h is the substrate thickness, t is
the thickness of the microstrip, w is the
width of the strip
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Coplanar Waveguide

= Coplanar waveguide used as a = Characteristic Impedance from
resonant coupling structure, conformal mapping4:

i.e. cavity with the qubit

30w K(kj)
Vet K (ko)
1K (k

Zy =

1) K (ko)
2 K(ky) K(ko)

h;‘_‘:;;‘.i;‘_‘_';;‘_i'_..“. : $
| N s + 2w

sinh (7s/4h)
sinh (7 (s + 2w) /4h)

K= /1 k2

w/2 do
14 Rainee N Simons. Coplanar Waveguide Circuits, Components, and K k L
Systems, chapter 2. Wiley Series in Microwave and Optical Engineering. ( ) - -

Wiley, 2001. 0 \/ k2 sin” 6

ECFF:1+
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COMSOL RF Module Demo: Work planes

cpw_meander.mph

e Component 1 (comp1) + €@~ Pi a= v f- B[S Car Electromagnetic Waves, Frequency Domain (emw) - | 83| &1 Mesh1+ = Study 1+ " Electric Field (emw) + (&~
el £ *| T2 +
Definitions Materials 88 Physics A\ Mesh ~db Study Results | Work Plane | |EG 5 |0 |MA| .~ ERA RN DA N ] | A e ©
Model Builder = 8 Sattings = B ||¢h craphics = 0O |[%2 add 5% 55 Add = 0
'+
+ ti== =g QR L Fee=sn S6EY
¥ 4 cow_meander.mph (oot} [ Build Selected « [E Build All x]iu'a n n n n n n n b
¥ () Global Definitions
Label: | Left Meander Center Conductor y1.1 2571
Pi Parameters . Ser
Materials
~ Object S
v [ Compenent 1 (comp 1) ject Type & ¥ (D Recently Used
Definitions Type: | Solid {1 Electromagnetic Waves, Fre
" Resonator Surface Selection 25| M Magnetic Fields (mf)
| "% Top of Air Boundary Surface = Sive/and Shape ¥ Magnetic and Electric Fields
¥ 15| Boundary System 1 (sys 1} B AuGeneral Form Boundary PDE
b elaview 1 Width:  w_cpw m 72 Wave Equation (waeq)
v Y4 Geometry 1 Helght: |1y turns o 251 » % Ac/DC
v 5 Metal Layer Work Plane (wp1) » 1)) Acoustics
¥ 4\ Plane Geometry ~ Pposition o hemical Species Transport
171 Ground plane (1) luid Flow
/1 Left Edge Taper Conductor (pol1) Base: | Center - » 1| Heat Transfer
=] Horizontal transition conductor (r2) xw: | -sub_x/2 + |_edge_taper + 5_fing + 2*1_fing + bturns + b turnsi2 + 3%w_cpw2 | m "I‘ﬁ‘f‘ Optics
/71 Left Taper to CPW Center Conductor (pal2) 1 L4 ﬁ Radic Frequency
7] Left Meander Center Conductor x1 (r4) ywi [ -w_cpw/2 + w_cpw m » =3 Structural Mechanics
7] Left Meander Center Conduetor y1 (r5) = = K » AuMathematics
| L] Left Meander Center Conductor x1.1 (6) Losiooizy o3
eft Meander Center Conductor y1.1 (r7) Rotation: [0 deg i
17 Left Meander Center Conductor x1.2 (r) °
171 Left Meander Center Conductor y1.2 (r3) L e
i Meander Line Center Conductor Middle Array (a2 -0.57] Physics interfaces in study
ﬂFmger Capacitor and Taper Mirror fmir1) ¥ Selections of Resulting Studies Solve
] Right Meander Center Conductor y1 (r10) - a1 Study 1 i
T Right Meander Center Conductor x1 (r11) Contribute to: | Mone New
1] Right Meander Center Conductor y1.1 (r12) - s - =
7] Right Meander Center Conductor x1.2 {r13) Resulting objects selection Dependent Variables
Center Conductor Union funi1) I ormain zeloction - .
/71 Bottom Left Edge Taper Ground Plane (poi3)
[T Bottom Left Finger Ground Plane (r14} 25
/71 Bottom Left Edge Taper Ground Plane 1 {pol4)
] Bottom Left Ground Plane 1 (r15) -
“dTop Left Edge Taper Ground Plane (mir2)
121 Top Left Ground Plane 1.1(r17) as
Left Taper Top Bottom Ground Plane (mir3) B
171 Bottom Left Ground Plane 1.2 (r18) i
71 Top Left Ground Plane 1.2 (r18) -
[T Top Left Ground Plane 1.3 (r20)
7] Bottom Left Ground Plane 1.3 (r21) 43
: Middle Ground Plane Array (arr3)
| =] Bottem Right Ground Plane 1.2 {r22) T0.004 "0.008 0.002 "0.001 o To.001 '0.002 ‘.03
171 Top Right Ground Plane 1.2 (r23) =
Ground Flane Union Top (uniz) B2 Messages £ . == Pragmss} Log} B Table] B8
Ground Plane Union Bottom {uni3) AN
View 2 COMSOL Multiphysies 5.2.1.152
[E] Extrude 1 fext1) Finalized geometry is empty.
Lbstrate (blkT) Opened file: cpw_meander.mph
» £ Air Layer Work Plane (wp2)
[CL Extrude 2 fext2)
[T Air boundary (blk2}
[ Form Union (fin)
F lanore Edoes 1 fige1)
1.21 GB | 6.06 GB

Lawrence Livermore National Laboratory l‘% 37

LLNL-PRES-676622 M e Bty ki b




COMSOL RF Module Demo: Work planes

cpw_meander.mph

DREEH G [ B |component 1 (compl) v &+ Pi a= v - B [E Cor 53 Electromagnetic Waves, Frequency Domain (emw) +|$8%( &7 B Mesh1 v = Study 1+ ™% Electric Field (emw) + (@ »
i csults (B Workplane | (EF E (B || & - O BN T SR A i e O
T Model Builser =8 ttings = B ||¢h Graphics = %5 add 28 551 Ada W =8
ot lETE A recfingle ARATH L-[Heecen &a
. i @ N N n n N n n n
¥ 2 cpvmeandermpn (roat) ild Selected » [ Build All =
¥ (£ Global Definitions
P Parameters Left Meander Center Conductor y1.1 257
i Sei
Materials
~ [Ppbiect Type i
v i Component 1 fcomp 1) ject Typs & ¥ (5 Recently Used
Definitions e | Solid {1 Electromagnetic Waves, Fre
= Resonator Surface Selection 357] M Magnetic Fields (mf)
| ‘a Top of Alr Boundary Surface ~ [ize and Shape ¥ Magnetic and Electric Fields
b [ Boundary System 1 (sys1) B AuGeneral Form Boundary PDE
bnlaview 1 Hth:  w_cpw m 72 Wave Equation (waeq)
¥ /A Geometry 1 Hifght: | ly_turns m 257 » % acoc
v {2 Metal Layer Work Plane (wp1) » ) Acoustics
¥ ' Plane Geometry ~ Rosition o hemical Species Transport
I Ground plane (r1} Juid Flow
/1 Left Edge Taper Conductor (pol1) plke: | Conter s » (1| Heat Transfer
I . '
=] Horizontal transition conductor (r2) « -sub_x/2 + |_edge_taper + 5_fing + 2*_fing + _turns + b turns2 + 3 w.cpw/2 | m ‘.‘GE\ Optics
/71 Left Taper to CPW Center Conductor (pal2) 1 L4 g Radic Frequency
7] Left Meander Center Conductor x1 (r4) Y] “W_CPW]2 + wcpw m » 553 Structural Mechanics
I Left Meander Center Conductor y1 (r5) = = K » AuMathematics
| L] Left Meander Center Conductor x1.1 (6) [EEEL o2
oft Meander Center Conductor y1.1 (r7) lkation: |0 deg i
17 Left Meander Center Conductor x1.2 (r) °
I Left Meander Center Conductor y1.2 (r3) L] ke
s Meander Line Center Conductar Middle Array (a2 -057] Physics interfaces in study
“dFinger Capacitor and Taper Mirror (mir1) ~ [elections of Resulting Studies Solve
I Right Meander Center Conductor y1 (r10) . ES T i
I Right Meander Center Conductor x1 (r11) htribute to: | None New
| I Right Meander Center Conductor y1.1 (r12) | s - =
71 Right Meander Center Conductor x1.2 (r13) Resulting objects selection Dependent Variables
Center Conductor Union funi1} how in 3D: | Domain s s 2
/1 Bottom Left Edge Taper Ground Plane (poi3)
[T Bottom Left Finger Ground Plane (r14} 25
/1 Bottom Leit Edge Taper Ground Plane 1 (pol4) .
= Bottom Left Ground Plane 1 (r15) =
4 Top Left Edge Taper Ground Plane (mir2) O e u I e r
I Top Left Ground Plane 1.1(r17) .
Left Taper Top Bottom Ground Plane (mir3) h
7 Bottom Left Ground Plane 1.2 (r18) . i
71 Top Left Ground Plane 1.2 (r18) -
[T Top Left Ground Plane 1.3 (r20)
7] Bottom Left Ground Plane 1.3 (r21) 43
: Middle Ground Plane Array (arr3)
| =] Bottem Right Ground Plane 1.2 {r22) T0.004 "0.008 0.002 "0.001 o To.001 '0.002 ‘.03
I Top Right Ground Plane 1.2 (r23) =
Ground Plane Union Top (uniz) B2 Messages £ . == Pragmss} Log} B Table] 8
Ground Plane Union Bottom {uni3) ’ AN
View 2 COMSOL Multiphysies 5.2.1.152
[El Extrude 1 fext1) Q Finalized geometry is empty.
m a e r I a S a n Opened flle: cpw_meander.mph
» £ Air Layer Work Plane (wp2) )
[CL Extrude 2 fext2)
[T Air boundary (blk2}
[k Form Unvion (fin) .
F lanore Edoes 1 fige1) p VS I ‘ S
. s
1.21 GB| 6.06 GB

Lawrence Livermore National Laboratory
LLNL-PRES-676622

VS =

v S deae Ko iy dobmarcid abes



Settings

=

Array
¥ Build Selected - [§§ Build All

Label: | Meander Line Center Conductor Middle Array

[+ input
Input cbjects:

=3

7
]
g

Active

['Hni

Array type:

ww size: ‘n_lurns-1

yw size: ‘ 1

['wm

aW: | 27lx_turns + 2°W_cpw

yw 0

[~ Selections of Resulting Entities

Contribute to: | None

] Resulting ebjects selection

Show in 3D: | Domain selection

COMSOL RF Module Demo: Arrays

b Graphics

@ QR - L meosn @@

;
x107%

12K

s Hdims] - O
= Add to Component
= Add to Selection

I

¥ (D) Recently Used
"é'” Electromagnetic Waves, Fre
1 Magnetic Fields (mf)
m Magnetic and Electric Fields
AuGeneral Form Boundary PDE
72 Wave Equation (waeq)

» % AC/DC

P 1)) Acoustics

> f.'EChemk:al Species Transport

b ===Fluid Flow

¥ (|| Heat Transfer

> H.NJpﬁ::s

[ 3 %‘ Radio Frequency

I 553 Structural Mechanics

> AuMathematics

~ Physics interfaces in study ——

|Studies Solve
[study 1 | ¢

D Dependent Variables

[ Messages =] Prngrunw L.ogﬂ E Tahll}

= g

b

COMSOL Multiphysics 5.2.1.152
Finalized geometry is empty.
Opened file: epw._meander.mph

1.19 GE | 6.05 GB
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COMSOL RF Demo: Meshing
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COMSOL RF Demo: Meshing
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COMSOL RF Demo: Boundary Conditions, PEC
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COMSOL RF Demo: Boundary Conditions, PEC
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COMSOL RF Demo: Boundary Conditions, Ports
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COMSOL RF Demo: Scattering Boundary
Condition

[ settings =

' Graphics

Scattering Boundary Condition
Label: | Scattering Boundary Condition 1
Boundary Selection

Selection: | Manual

)

2D | i
2 E
active |3 ]
7 [l
]
27
29

* Override and Contribution
} Equation
¥ Coordinate System Selection

Coordinate system:

Global coordinate system
~ Seattering Boundary Condition
Incident field:

No incident field

Scattered wave type:

Plane wave

Order:

First order

Applied to all
non-PECand
non-port exterior
boundaries

Qa@@E Loyl =
[ "]

%2 add 5% i Add = g
*

¥ (1) Recently Used
%‘ Electromagnetic Waves, Fre
M Magnetic Fields (mf)
g! Magnetic and Electric Fields
Au General Form Boundary PDE
72 Wave Equation (waeq)

» % Ac/DC

b 1)) Acoustics

Chemical Species Transport

uid Flow

» |I| Heat Transfer

[ IIB(( Optics

¥ 2 Radio Frequency

I B Structural Mechanics

» AU Mathematics

Physics interfaces in study

Studies Salve
Study 1 [

} Dependent Variables

[ Messages 23 =] Progress] ch] =) Tab\e]

= a

b

COMSOL Multiphysies 5.2.1.152
Finalized geometry is empty.
Opened file: cpw_meander.mph

Lawrence Livermore National Laboratory

LLNL-PRES-676622

N

v S deae Ko iy dobmarcid abes

47



COMSOL RF Demo: Frequency Sweep
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COMSOL RF Demo

: E-Field Plot
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COMSOL RF Demo: E-Field Plot
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Closing Comments on cQED and COMSOL

= Superconducting qubits benefit from simple descriptions in
cQED by through analogies with cavity QED

= Black box quantization provides a systematic method of
qguantizing the bulk features of devices as circuits

= COMSOL provides a simulation environment to model the
classical geometric features of qubits
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