Simulation of Superconducting Qubit Devices

Workshop on Microwave Cavities and Detectors for Axion Research

Nick Materise

LLNL-PRES-676622

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- Definition of a qubit
- Non-linearity in superconducting qubits and Josephson junctions
- Cavity QED and Circuit QED
- Black box Circuit Quantization
- Types of Superconducting Qubits
- Physical realization of superconducting circuits
- Simulating RF components of qubits in COMSOL

Qubits

- A quantum "bit" or two level system / *effective* two level system with addressable energy levels
- In some cases, a qubit can be treated as a harmonic oscillator with non-linearly spaced levels
- Level spacing due to anharmonicity from non-linearity(ies), allows for designs that minimize leakage to higher excited states of the qubit(s)

Source of Non-linearity: Josephson Junction

- DC Josephson Effect B. Josephson, 1962¹
 - Non-zero periodic current, due to tunneling Cooper Pairs across an SIS (superconductor-insulator-superconductor) junction
 - The current varies periodically in the phase difference across the junction, acting as a macroscopic quantum variable
 - Josephson Current and Voltage Equations

Source of Non-linearity: Josephson Junction

- DC Josephson Effect B. Josephson, 1962¹
 - Non-zero periodic current, due to tunneling Cooper Pairs across an SIS (superconductor-insulator-superconductor) junction
 - The current varies periodically in the phase difference across the junction, acting as a macroscopic quantum variable
 - Josephson Current and Voltage Equations

¹B.D. Josephson, Phys.Lett. **1**, 7 (1962)

IV Characteristics of Josephson Junctions

The DC current in an SIS junction is given at zero temperature²

$$I_{\rm dc} = \operatorname{Im}\left\{j_2(\omega)\right\}, \quad I_{\rm dc} \sim \operatorname{sgn}(\omega) K_0\left(\left(\frac{x^2 - 1}{x^2 - \delta^2}\right)^{1/2}\right), \quad x = \frac{|\omega|}{\Delta_1 + \Delta_2}, \quad \delta = \frac{\Delta_1 - \Delta_2}{\Delta_1 + \Delta_2}$$

• where K_0 is the zero-th order modified Bessel function of the first kind, Δ_1 , Δ_2 are the superconducting gap energies of the superconducting leads

IV Characteristics of Josephson Junctions

The DC current in an SIS junction is given at zero temperature²

$$I_{\rm dc} = \operatorname{Im}\left\{j_2(\omega)\right\}, \quad I_{\rm dc} \sim \operatorname{sgn}(\omega) K_0\left(\left(\frac{x^2 - 1}{x^2 - \delta^2}\right)^{1/2}\right), \quad x = \frac{|\omega|}{\Delta_1 + \Delta_2}, \quad \delta = \frac{\Delta_1 - \Delta_2}{\Delta_1 + \Delta_2}$$

• where K_0 is the zero-th order modified Bessel function of the first kind, Δ_1 , Δ_2 are the superconducting gap energies of the superconducting leads

Josephson Junction Circuit Model

- Josephson Junctions can be approximated by linear, passive circuit elements shunting a non-linear inductance L_I
 - RCSJ Model (Resistance and Capacitive Shunted Junction)³
 - Useful model for including simple non-linear behavior in classical simulations, e.g. COMSOL
 - From Kirchhoff's current law, the current flowing through each element in the circuit is given by

Josephson Junction Circuit Model

- Josephson Junctions can be approximated by linear, passive circuit elements shunting a non-linear inductance L_I
 - RCSJ Model (Resistance and Capacitive Shunted Junction)³
 - Useful model for including simple non-linear behavior in classical simulations, e.g. COMSOL
 - From Kirchhoff's current law, the current flowing through each element in the circuit is given by

$$I = \frac{V}{R_n} + C_J \frac{dV}{dt} + I_c \sin\left(\varphi\right)$$

Circuit Quantum Electrodynamics (cQED)

- Use Josephson Junctions as a source of non-linearity to realize macroscopic quantum systems
- Borrow concepts from the optics community, e.g. cavity QED to implement familiar systems
- Atom in a resonant cavity is the most basic model

Cavity QED and Model Hamiltonians

- Cavity QED: two level atomic system trapped in a mirrored, high finesse resonant cavity
- Follows the Jaynes-Cummings Hamiltonian³

$$\hat{H} = \underbrace{\hbar\omega_r \left(\hat{a}^{\dagger}\hat{a} + 1/2\right)}_{\text{EM field quantization}} + \underbrace{\hbar\omega_a \hat{\sigma_z}/2}_{\text{spin-1/2 atom}} + \underbrace{\hbar g \left(\hat{a}^{\dagger}\hat{\sigma}_- + \hat{a}\hat{\sigma_+}\right)}_{\text{atom-cavity interaction}}$$

- ³ D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
- ⁴ R. J. Schoelkopf and S. M. Girvin, Nature, vol. 451, pp. 664– 669, 02 2008.

Cavity QED and Model Hamiltonians

- Cavity QED: two level atomic system trapped in a mirrored, high finesse resonant cavity
- Follows the Jaynes-Cummings Hamiltonian³

$$\hat{H} = \underbrace{\hbar \omega_r \left(\hat{a}^{\dagger} \hat{a} + 1/2 \right)}_{\text{EM field quantization}} + \underbrace{\hbar \omega_a \hat{\sigma_z}/2}_{\text{spin-1/2 atom}} + \underbrace{\hbar g \left(\hat{a}^{\dagger} \hat{\sigma}_- + \hat{a} \hat{\sigma_+} \right)}_{\text{atom-cavity interaction}}$$

$$2g = \text{Vacuum Rabi Frequency}$$

$$\kappa = \text{Cavity Decay Rate}$$

$$\gamma_{\perp} = \text{Transverse Decay Rate}$$

$$T_{\text{transit}} = \text{Time for atom to leave cavity}}$$

- ³ D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007.
- ⁴ R. J. Schoelkopf and S. M. Girvin, Nature, vol. 451, pp. 664– 669, 02 2008.

Atom trapped in a cavity with photon emission, atomic-

cavity dipole coupling, and atom transit time shown⁴.

Cavity QED and Circuit QED, from optics to RF

Cavity QED	Circuit QED
Two Level Atom	Artificial atom, truncated to two levels
High Finesse Cavity	High Q Cavity / Planar Resonator
Small transition dipole moment	Arbitrarily large transition dipole moment, e.g. strong coupling regime
1/κ,1/γ	T_1, T_2

 Large dipole moment couples the qubit well to the cavity in superconducting qubits: coupling strength and energy levels are *tunable* by design or in situ

Cavity QED and Circuit QED, Device Comparison

Parameter	Symbol	Cavity QED ³	Circuit QED ^{3, 5}
Resonator, Qubit Frequencies	$\omega_{r_{r}}\omega_{q}$ / 2 π	~ 50 GHz	~ 5 GHz
Transition Dipole Moment	d/ea_0	~1	~ 104
Relaxation Time	T_1	30ms	60 µs
Decoherence Time	T_2	~1 ms	~10-20 μs

- Large dipole moment couples the qubit well to the cavity in superconducting qubits: coupling strength and energy levels are *tunable*
- Trapped atoms in cavities have *longer coherence times, not tunable,* weakly coupled to the cavity for measurement

³ D. I. Schuster, Circuit Quantum Electrodynamics. PhD thesis, Yale University, 2007. ⁵ H. Paik, et al., Phys. Rev. Lett. **107**, 240501 (2011)

• Simplest model is an LC-resonator treated as a quantum harmonic oscillator with classical Lagrangian, Hamiltonian, and quantized operators³ ϕ , E_3

• Simplest model is an LC-resonator treated as a quantum harmonic oscillator with classical Lagrangian, Hamiltonian, and quantized operators³ ϕ (E₂)

• Simplest model is an LC-resonator treated as a quantum harmonic oscillator with classical Lagrangian, Hamiltonian, and quantized operators³ ϕ F_{a}

Simplest model is an LC-resonator treated as a quantum harmonic oscillator with classical Lagrangian, Hamiltonian, and quantized operators³

Simplest model is an LC-resonator treated as a quantum harmonic oscillator with classical Lagrangian, Hamiltonian, and quantized operators³

Black box Circuit Quantization

- Idea is to extract all linear components of the qubit and microwave circuitry by synthesizing an equivalent passive electrical network
- The network is obtained by computing the S-parameters of a device using FEM software (COMSOL, HFSS) and converting them to an impedance, Z (j!)

Black box Circuit Quantization—Vector Fit

 The impedance function is fit to a pole-residue expansion following the Vector Fit procedure, a least squares fit to a rational function of the form⁶

$$Z(s) \simeq \sum_{k=1}^{M} \frac{R_k}{s - s_k} + d + es$$

- From this form, there are two synthesis approaches with two quantization schemes
 - Lossy Foster approach (approximate circuit synthesis)⁷
 - Brune exact synthesis approach⁸

⁶ B. Gustavsen et al., IEEE Tran on Power Delivery, 14(3):1052–1061, Jul 1999

- ⁷ F. Solgun et al. Phys.Rev.B **90**, 134504 (2014)
- ⁸ S. E. Nigg et al. Phys.Rev.Lett. **108**, 240502 (2012)

Black box Circuit Quantization—Lossy Foster

Taking the constant term d = 0 and excluding the pole at s = 1 or setting e = 0 leaves the rational function with poles and residues R_k, s_k⁷

$$Z(s) = \sum_{k=1}^{M} \frac{R_k}{s - s_k}, \quad s_k = \xi_k + j\omega_k, \quad R_k = a_k + jb_k$$

 Expanding the k-th component of Z(s) in partial fractions and taking the low loss limit, »_k, b_k ¿ 1

$$Z_k(s) = \frac{R_k}{s - s_k} + \frac{R_k^*}{s - s_k^*} \simeq \frac{2a_k s}{s^2 - 2\xi_k s + \omega_k^2}$$
$$\implies \left[Z_k(s) = \frac{\frac{\omega_k R_k}{Q_k} s}{s^2 + \frac{\omega_k}{Q_k} s + \omega_k^2} \right] \quad \text{RLC Tank Circuit!}$$

⁷ F. Solgun et al. Phys.Rev.B **90**, 134504 (2014)

Black box Circuit Quantization—Lossy Foster

- Main result of the Lossy Foster treatment is a set of uncoupled harmonic oscillators as a series of RLC circuits
- Circuit elements in terms of the real and imaginary components of the poles and residues⁷

 ⁷ F. Solgun et al. Phys.Rev.B **90**, 134504 (2014)
 ⁹ J. Bourassa et al. Phys.Rev.A **86**, 013814 (2012)

Black box Circuit Quantization—Lossy Foster

- From the circuit elements, a lossless Hamiltonian is obtained by taking the limit $R_k \rightarrow 1.8_k$
- The LC circuits are quantized as harmonic oscillators giving the linear Hamiltonian⁸

$$\hat{H}_0 = \sum_{k=1}^{M} \hbar \omega_k \left(\hat{a}_k^{\dagger} \hat{a}_k + 1/2 \right)$$

 A non-linear Hamiltonian accounts for the qubit and its coupling to the harmonic modes

$$\hat{H}_{\rm nl} = E_J \left(1 - \cos \hat{\varphi} - \frac{\hat{\varphi}^2}{2} \right), \quad \hat{\varphi} = \sum_{k=1}^M \sqrt{\frac{\hbar}{2\omega_k C_k}} \left(\hat{a}_k + \hat{a}_k^\dagger \right)$$

⁸ S.E. Nigg et al. Phys.Rev.Lett. **108**, 240502 (2012)

Types of Superconducting Qubits: Charge Qubits

- Early Charge qubit Cooper Pair Box (CPB)
 - Cooper pairs tunnel across the junction leading to a charge number operator
 - Typical implementations include a resonator that plays the role of a cavity
 - Hamiltonian in the charge basis for single Josephson junction³

$$\begin{split} \hat{H}_{\rm CPB} &= 4E_C \left(\hat{N} - n_g/2 \right)^2 + \frac{1}{2} E_J \sum_n \left(|n\rangle \langle n+1| + |n+1\rangle \langle n| \right) \\ &- \text{"Split" CPB including RLC resonator and} \\ &\text{coupling}^3 \\ \hat{H}_{\rm CPB+RLC} &= \underbrace{4E_C \left(\hat{N} - n_g/2 \right)^2}_{\rm CPB \ term} + \underbrace{\frac{4E_C C_g \hat{V} \left(2V_g + \hat{V} \right)}{e}}_{\text{junction capacitance}} - \underbrace{\frac{4_C C_g \hat{V} \hat{N}}{e}}_{\text{RLC-CPB \ coupling}} \end{split}$$

Types of Superconducting Qubits: Charge Qubits

- Early Charge qubit Cooper Pair Box (CPB)
 - Rotating wave approximation (RWA) and Jaynes-Cummings Hamiltonian
 - Approximate number and charge number operators as Pauli operators³ $\hat{N} \approx \hat{\sigma}_z/2$, $(|n\rangle\langle n+1| + |n+1\rangle\langle n|) \approx \hat{\sigma}_x$
 - Expand voltage operator, V, apply RWA to coupling term and substitute the qubit plasma frequency, $!_p = (L_jC_j)^{-1/2}$

$$\begin{split} \hat{V} &= \sqrt{\frac{\hbar\omega_r}{2C}} \left(\hat{a} + \hat{a}^{\dagger} \right), \quad -\frac{4E_C C_g \hat{V} \hat{N}}{e} = 2\hbar g \left(\hat{a} + \hat{a}^{\dagger} \right) \hat{\sigma}_x \\ 2\hbar g \left(\hat{a} + \hat{a}^{\dagger} \right) \hat{\sigma}_x &\approx \hbar g \left(\hat{a} \hat{\sigma}_+ + \hat{a}^{\dagger} \hat{\sigma}_- \right) \\ \hline \hat{H}_{CPB+RLC} &\approx \hbar\omega_r \hat{a}^{\dagger} \hat{a} + \hbar\omega_p \hat{\sigma}_z / 2 + \hbar g \left(\hat{a} \hat{\sigma}_+ + \hat{a}^{\dagger} \hat{\sigma}_- \right) \end{split}$$

Types of Superconducting Qubits: Charge Qubits

- Early Charge qubit Cooper Pair Box (CPB)
 - Rotating wave approximation (RWA) and Jaynes-Cummings Hamiltonian
 - Approximate number and charge number operators as Pauli operators³ $\hat{N} \approx \sigma_z/2$, $(|n\rangle\langle n+1| + |n+1\rangle\langle n|) \approx \sigma_x$
 - Expand voltage operator, V, apply RWA to coupling term and substitute the qubit plasma frequency, $!_p = (L_jC_j)^{-1/2}$

$$\hat{V} = \sqrt{\frac{\hbar\omega_r}{2C}} \left(\hat{a} + \hat{a}^{\dagger} \right), \quad -\frac{4E_C C_g \hat{V} \hat{N}}{e} = 2\hbar g \left(\hat{a} + \hat{a}^{\dagger} \right) \hat{\sigma}_x$$

$$2\hbar g \left(\hat{a} + \hat{a}^{\dagger} \right) \hat{\sigma}_x \approx \hbar g \left(\hat{a} \hat{\sigma}_+ + \hat{a}^{\dagger} \hat{\sigma}_- \right)$$

$$\hat{H}_{CPB+RLC} \approx \hbar \omega_r \hat{a}^{\dagger} \hat{a} + \hbar \omega_p \hat{\sigma}_z / 2 + \hbar g \left(\hat{a} \hat{\sigma}_+ + \hat{a}^{\dagger} \hat{\sigma}_- \right)$$

**Reclaims Jaynes-Cummings Hamiltonian

Types of Superconducting Qubits: Transmon

- Transmon, an improved charge qubit
 - Shunt capacitor reduces sensitivity to charge noise
 - Flatter energy levels, weakly anharmonic
 - Hamiltonian, qubit + resonator³

$$\hat{H}_{\text{trans}} = -4E_C \frac{\partial^2}{\partial \varphi^2} - E_J \cos\left(\varphi\right)$$
$$\approx -4E_C \frac{\partial^2}{\partial \varphi^2} - E_J \left(1 - \frac{\varphi^2}{2} + \frac{\varphi^4}{4!} + \mathcal{O}\left(\varphi^6\right)\right)$$
$$\varphi = \frac{1}{\sqrt{2}} \left(\frac{8E_C}{E_J}\right)^{1/4} \left(\hat{b} + \hat{b}^{\dagger}\right)$$
$$\hat{N} = \frac{1}{\sqrt{2}} \left(\frac{E_J}{8E_C}\right)^{1/4} \left(\hat{b} - \hat{b}^{\dagger}\right)$$

Types of Superconducting Qubits: Transmon

- Transmon, an improved charge qubit
 - Hamiltonian in the energy basis, anharmonic oscillator³

$$\hat{H}_{\text{trans}} \approx \hbar \omega_p \left(\hat{b}^{\dagger} \hat{b} + 1/2 \right) - \frac{E_C}{12} \left(\hat{b} + \hat{b}^{\dagger} \right)^4$$

- Including resonator and coupling term follow a similar treatment as the CPB qubit
- Kerr and cross Kerr terms may be included when expanding the fourth power in b

Types of Superconducting Qubits: Flux Qubits

- Flux qubit
 - Flux threading a loop is quantized; DC SQUID biases the qubit
 - Persistent current I_p forms in the superconducting loop
 - Hamiltonian, with fixed gap $\Delta^{10,\;11}$

$$\hat{H} = I_p \Phi_0 \left(\Phi / \Phi_0 - (n+1/2) \right) \hat{\sigma}_z + \hbar \Delta \hat{\sigma}_x$$

- Capacitively shunted flux qubit
 - Shunt the flux qubit with a large capacitor, similar to the transmon for charge qubits
 - Hamiltonian, with resonator¹²

$$\hat{H} \approx \hbar \omega_q \left(\Phi_b \right) \hat{\sigma}_z / 2 + \hbar \omega_r \left(\hat{a}^{\dagger} \hat{a} + 1/2 \right) + \hbar \chi \left(\Phi_b \right) \left(\hat{a}^{\dagger} \hat{a} + 1/2 \right) \hat{\sigma}_z$$

¹⁰ M.J. Schwarz et al. *New Journal of Physics* **15** (2013) 045001
 ¹¹ T.P. Orlando, Phys.Rev.B **60**, 15398 (1999)
 ¹² F. Yei et al, Nature Communications **7** (2016)

Physical Designs: CPW + CPB = Cavity + Atom

- Implemented as Josephson Junction capacitively coupled to transmission line resonator (coplanar waveguide, CPW)
 - Transmission Line Resonator ~ Cavity
 - 2D Planar or 3D cavity couples qubit to drive and readout
- Dipole moment, d, in terms of the magnitude of the applied voltage V₀, CPW conductor width w, electric field magnitude E₀, and coupling of the qubit to the resonator¹³

$$\hbar g = (ew) \frac{1}{w} V_0 = dE_0$$

Coplanar waveguide resonator and lumped circuit¹³

Physical Designs: Transmon

- Similar in design to CPB with the following modifications
 - Shunt capacitance implemented with an interdigitated capacitor or sufficiently large gap of exposed substrate between conductors

Micrograph of resonator and transmon reproduced from³

COMSOL RF Simulation Building Blocks

- Model systems used to develop more accurate descriptions of the microwave circuits that constitute a qubit
- Model Progression
 - 1. Microstrip transmission line

2. Coplanar Waveguide (CPW)

COMSOL RF Simulation Building Blocks

- Model systems used to develop more accurate descriptions of the microwave circuits that constitute a qubit
- Model Progression
 - 1. Interdigitated Capacitor (IDC)

2. Meanderline resonator

Microstripline Resonator

- Electric field norm and characteristic impedance, Z₀
- Characteristic impedance is given by

$$Z_0 = \frac{87}{\sqrt{\epsilon_r + 1.41}} \ln\left(\frac{5.98h}{0.8w + t}\right)$$

where h is the substrate thickness, t is the thickness of the microstrip, w is the width of the strip

Coplanar Waveguide

- Coplanar waveguide used as a resonant coupling structure,
 i.e. *cavity* with the qubit
- Characteristic Impedance from conformal mapping¹⁴:

¹⁴ Rainee N Simons. Coplanar Waveguide Circuits, Components, and Systems, chapter 2. Wiley Series in Microwave and Optical Engineering.

Wiley, 2001.

ε_r

COMSOL RF Module Demo: Work planes

COMSOL RF Module Demo: Work planes

Lawrence Livermore National Laboratory LLNL-PRES-676622

COMSOL RF Module Demo: Arrays

COMSOL RF Module Demo: Arrays

Settings 🗖 🗖	🔥 Graphics 📃 🗖	🕼 Add 🕱 📑 Add 📄 🗖 🗍
Array	Q, Q, ∰, ⊕ 🛃 🚺 👉 📾 🚍 🗮 🕮 🗑 🖗 🗐 🗑 🖶 🖯 🙆 🔒	+ Add to Component
📳 Build Selected 🔻 🏢 Build All	x10-3	+ Add to Selection
Label: Meander Line Center Conductor Middle Array	4.5	
▼ Input		Sei
Input chiester	4	Recently Used
	3.5	Magnetic Fields (mf)
	· · · · · · · · · · · · · · · · · · ·	Magnetic and Electric Fields
Active r9	3	
- E	25	AC/DC
		Minimizer Species Transport
	2	Fluid Flow
* Size	1.5	Heat Transfer Monton
Array type: Rectangular	,	Radio Frequency
xw size: n_turns-1		Structural Mechanics Au Mathematics
yw size: 1		P 40 Mathematics
Displacement		
w. 2 x_toms + 2 w_cpw	-0.5	 Physics interfaces in study
jin. U		Studies Solve
Selections of Resulting Entities		Study 1
Contribute to: None 📀 New	-1.5	Dependent Variables
	-2	
Chawlin 3D: Domain selection		
	-25	
	-3	
	-3.5	
	.4	
	/re-	
	-0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003	
	🖂 Messages 🕱 🔎 Progress 🔟 Log 🧮 Table	
	COMSOL Multiphysics 5.2.1.152	
	Prinaized geometry is empty. Opened file: cpw_meander.mph	
	1.17 GB 6.05 GB	

COMSOL RF Demo: Extrusions

Extrude		📽 Add 🛛 🟥 Add 🗖 🗖
🔚 Build Selected 🔻 🧱 Build All Objects		+ Add to Selection
Label: Extrude 1		Sei
* General	Extrusion	Recently Used
Extrude from: Faces	Extrasion	Electromagnetic Waves, Fre
Input faces:	direction	Magnetic Fields (mf)
	T arection	∆u General Form Boundary PDE
Active 3 5		AC/DC
÷		Acoustics Chemical Species Transport
	1,0,5 ×10 ⁻³	Fluid Flow Ident Transfer
	2	► H0 Optics
Unite with input objects	×10	 Radio Frequency Structural Mechanics
Distances from Plane		▶ ∆u Mathematics
Distances (m)	-2	
t_metal		
		Physics interfaces in study
		Studies Solve
	a star	
Reverse direction	A BC MARTIN	Dependent Variables
▹ Scales		
▶ Dienlacemente		
· Twist Angles		
Polygon Resolution of Edges		
* Selections of Resulting Entities	2	
Contribute to: None New	y 📩 x	
Resulting objects selection		
Show in physics: Domain selection	🖂 Messages 🕱 💭 Progress 🔠 Log 🇮 Table	- 8
	6	
	COMSOL Multiphysics 5.2.1.152 Finalized geometry is empty.	
	Opened file: cpw_meander.mph	
	1.17 GB 6.06 GB	

COMSOL RF Demo: Meshing

COMSOL RF Demo: Meshing

COMSOL RF Demo: Boundary Conditions, PEC

COMSOL RF Demo: Boundary Conditions, PEC

COMSOL RF Demo: Boundary Conditions, Ports

COMSOL RF Demo: Scattering Boundary Condition

COMSOL RF Demo: Frequency Sweep

FFE Settings		- 8	💧 Graphi	cs				5	- 0
Frequency Domain			Q Q (रे 🕀 🛄 🔚 🔲 🔟					
= Compute C Update Solution		S11 of Meander Line Resonator							
Label: Frequency Domain			×10 ¹² 0		10000000000000000000000000000000000000				**
Study Settings						~ *		~	
			-0.5						
Frequency unit:	Hz	• • • • • • • • • • • • • • • • • • •							
			-1						
Frequencies:	range(6[GHz], 0.0125[GHz],	7[GHz]) Hz	-1.5						
Load parameter values:	Resurse Dood	File	-2						
	Browse Read	File							
Reuse solution from previous step:	Auto	• • • • • • • • • • • • • • • • • • •	-2.5						
Results While Solving			s11 -3	-					
			.35						
 Physics and Variables Selection 			-5.5						
Modify physics tree and variable	s for study step		-4						
Physics interface	Solve for Discret	tization							
Electromagnetic Waves, Freq	uency Y Physics	s settings 🔻	-4.5						
		oottiingo							
Multiphysics		Solve for	-5						
Values of Dependent Variables			-5.5						
Mesh Selection			-6						
Study Extensions			-65				4	÷	
				3.5 4	4.5 5	5.5 from (GHz)	6 6.5	7	7.5
						freq (GHZ)			

COMSOL RF Demo: E-Field Plot

COMSOL RF Demo: E-Field Plot

Lawrence Livermore National Laboratory LLNL-PRES-676622

Closing Comments on cQED and COMSOL

- Superconducting qubits benefit from simple descriptions in cQED by through analogies with cavity QED
- Black box quantization provides a systematic method of quantizing the bulk features of devices as circuits
- COMSOL provides a simulation environment to model the classical geometric features of qubits

Acknowledgements

- Jonathan DuBois, Eric Holland, Matthew Horsley, Vincenzo Lordi, Scott Nelson, Yaniv Rosen, Nathan Woollett
- This work was funded by the LLNL Laboratory Directed Research and Development (LDRD) program, project number 15-ERD-051.

Thank you—Questions

