Wafer-scale microwave dielectric loss extraction using a split-post superconducting cavity

Nick Materise¹, John Pitten^{3,4,5}, William Strickland², Michael Vissers⁴, Eliot Kapit¹, and Corey Rae H. McRae^{3,4,5}

¹Colorado School of Mines, Department of Physics, Golden, CO 80401, USA

²Center for Quantum Phenomena, Department of Physics, New York University

³Department of Physics, University of Colorado, Boulder, CO 80309, USA

⁴National Institute of Standards and Technology, Boulder, CO 80305, USA

⁵Boulder Cryogenic Quantum Testbed, University of Colorado, Boulder, CO 80309, USA

November 6, 2023

Introduction

 Superconducting qubits are approaching their bulk substrate loss limits¹

- ¹Ganjam et al., arXiv e-prints, arXiv:2308.15539 (2023).
- ²Bourhill et al., Phys. Rev. Appl. **11**, 044044 (2019).
- ³Krupka et al., IEEE Transactions on Microwave Theory and Techniques 47, 752 (1999).
- ⁴Read et al., Phys. Rev. Appl. **19**, 034064 (2023).
- ⁵Checchin et al., Phys. Rev. Appl. **18**, 034013 (2022).

Introduction

- Superconducting qubits are approaching their bulk substrate loss limits¹
- Superconducting cavities are increasingly becoming the system of choice to extract bulk losses²

⁵Checchin et al., Phys. Rev. Appl. 18, 034013 (2022).

¹Ganjam et al., arXiv e-prints, arXiv:2308.15539 (2023).

²Bourhill et al., Phys. Rev. Appl. **11**, 044044 (2019).

³Krupka et al., IEEE Transactions on Microwave Theory and Techniques 47, 752 (1999).

⁴Read et al., Phys. Rev. Appl. **19**, 034064 (2023).

Introduction

- Superconducting qubits are approaching their bulk substrate loss limits¹
- Superconducting cavities are increasingly becoming the system of choice to extract bulk losses²
- All experiments up to this point have extracted bulk losses from proxies: boules³, pieces of wafers⁴, rods⁵, etc.

¹Ganjam et al., arXiv e-prints, arXiv:2308.15539 (2023).

²Bourhill et al., Phys. Rev. Appl. **11**, 044044 (2019).

³Krupka et al., IEEE Transactions on Microwave Theory and Techniques 47, 752 (1999).

⁴Read et al., Phys. Rev. Appl. **19**, 034064 (2023).

⁵Checchin et al., Phys. Rev. Appl. 18, 034013 (2022).

Introduction

¹Ganjam et al., arXiv e-prints, arXiv:2308.15539 (2023).

²Bourhill et al., Phys. Rev. Appl. **11**, 044044 (2019).

³Krupka et al., IEEE Transactions on Microwave Theory and Techniques 47, 752 (1999).

⁴Read et al., Phys. Rev. Appl. **19**, 034064 (2023).

⁵Checchin et al., Phys. Rev. Appl. 18, 034013 (2022).

N. Materise et al., nmaterise@mines.edu AVS 69 Quantum Workshop

Split Post Cavity Design

 Design goals: high wafer participation, ease of assembly, low bare cavity loss

Split Post Cavity Design

- Design goals: high wafer participation, ease of assembly, low bare cavity loss
- High order quasi-TM mode as the measurement mode with frequency 5.210 GHz

Split Post Cavity Design

- Design goals: high wafer participation, ease of assembly, low bare cavity loss
- High order quasi-TM mode as the measurement mode with frequency 5.210 GHz
- Posts must contact the wafer to maximize participation; post diameter just less than wafer diameter

Seam Loss Mitigation

• Minimize current at H-plane seam with $\lambda/4$ choke^{6,7}

⁶G. L. Ragan. Microwave Transmission Line Circuits. 1948.

⁷T. Brecht, PhD Thesis, (2017).

 Measure the loss of the bare cavity, extract loss contributions from seam and walls using multiple cavity resonances

$$Q_{\text{walls}}^{-1} = \frac{R_s}{X_s} \frac{\lambda_L \int_S |\mathbf{H}|^2 \, \mathrm{d}^2 \mathbf{x}}{\int_V |\mathbf{H}|^2 \, \mathrm{d}^3 \mathbf{x}} = \frac{R_s}{X_s} p_{\text{cond}}$$
$$Q_{\text{seam}}^{-1} = G_{\text{seam}}^{-1} L \frac{\int_{\gamma_{\text{seam}}} |\mathbf{J} \times \mathbf{I}|^2 \, \mathrm{d}I}{\omega \mu_0 \int_V |\mathbf{H}|^2 \, \mathrm{d}^3 \mathbf{x}} = \frac{y_{\text{seam}}}{g_{\text{seam}}}$$

⁸J. Gao, PhD Thesis, (2008).

⁹Woods et al., Phys. Rev. Applied **12**, 014012 (2019).

- Measure the loss of the bare cavity, extract loss contributions from seam and walls using multiple cavity resonances
- Dielectric contribution to the loss from the wafer

$$\begin{split} Q_{\text{wafer}}^{-1} &= \delta_{\text{wafer}} = F \delta_{TLS}^{0} \frac{\tanh(\hbar \omega / 2k_B T)}{\left(1 + \frac{\langle n \rangle}{n_c}\right)^{\beta}} \\ F &= p_{\text{wafer}} = \frac{\frac{1}{2} \epsilon_{\text{wafer}} \int_{V_{\text{wafer}}} |\mathbf{E}|^2 \, \mathrm{d}^3 \mathbf{x}}{\frac{1}{2} \epsilon \int_{V_{\text{all}}} |\mathbf{E}|^2 \, \mathrm{d}^3 \mathbf{x}} \end{split}$$

⁸J. Gao, PhD Thesis, (2008).

⁹Woods et al., Phys. Rev. Applied **12**, 014012 (2019).

- Measure the loss of the bare cavity, extract loss contributions from seam and walls using multiple cavity resonances
- Dielectric contribution to the loss from the wafer
- Measure the loaded cavity, extract wafer loss⁸

$$egin{aligned} Q_{ ext{bare,tot}}^{-1} &= Q_{ ext{walls}}^{-1} + Q_{ ext{seam}}^{-1} \ Q_{ ext{loaded,tot}}^{-1} &= Q_{ ext{bare,tot}}^{-1} + Q_{ ext{wafer}}^{-1} \end{aligned}$$

⁸J. Gao, PhD Thesis, (2008).

⁹Woods et al., Phys. Rev. Applied **12**, 014012 (2019).

- Measure the loss of the bare cavity, extract loss contributions from seam and walls using multiple cavity resonances
- Dielectric contribution to the loss from the wafer
- Measure the loaded cavity, extract wafer loss⁸

▶
$$p_{\text{wafer}} = 0.996, \ (\delta_{\text{TLS, Si}}^0 \sim 5 \times 10^{-7})^9,$$

we want $Q_{\text{bare,tot}}^{-1} < Q_{\text{wafer}}^{-1}/2$

 $Q_{\mathrm{loaded,tot}}^{-1} < rac{1}{2} Q_{\mathrm{wafer}}^{-1} \lesssim 2.5 imes 10^{-7}$

⁹Woods et al., Phys. Rev. Applied **12**, 014012 (2019).

⁸J. Gao, PhD Thesis, (2008).

Loss Extraction Approach Preliminary Measurements Next Steps

Experiment Preparation

Post separation measurement with (a) plastigauge post gap measurement, (b) wafer mounting, (c) cavity mount and RuOx temperature sensor

Loss Extraction Approach Preliminary Measurements Next Steps

Temperature Dependent Measurements

Extract the London Penetration Depth $\lambda_L = 43\,\mathrm{nm}$ from Mattis Bardeen fits

Preliminary Measurements

▶ Bare, unetched cavity losses of four resonances fit with a linear model

$$rac{Q_{ ext{bare, tot}}^{-1}}{y_{ ext{seam}}} = rac{1}{g_{ ext{seam}}} + R_s rac{p_{ ext{cond}}}{X_s y_{ ext{seam}}}, \, y = ax + b, \, a = R_s, \, b = g_{ ext{seam}}^{-1}$$

Table: Unetched cavity estimated wall and seam losses. Between post resonances in orange.

Mode Frequency [GHz]	$p_{ m cond}$	$y_{ m seam}$	$Q_{ m walls}^{-1}$	$Q_{ m seam}^{-1}$	$Q_{ m bare,tot}^{-1}$
4.657	$9.78 imes10^{-6}$	$7.75 imes10^{-3}$	$1.9 imes10^{-7}$	$2.4 imes10^{-6}$	$(2.3\pm 0.4) imes 10^{-6}$
5.2101	$1.15 imes10^{-5}$	$1.11 imes10^{-2}$	$2.0 imes10^{-7}$	$3.4 imes10^{-6}$	$(2.7\pm 0.3) imes 10^{-6}$
6.551	$1.33 imes10^{-5}$	$3.21 imes10^{-3}$	$1.5 imes10^{-7}$	$9.8 imes10^{-7}$	$(1.90 \pm 0.02) imes 10^{-6}$
7.875	$1.25 imes10^{-5}$	$2.2 imes 10^{-3}$	$1.5 imes10^{-7}$	$6.7 imes10^{-7}$	$(5.4 \pm 0.2) imes 10^{-7}$

Unetched Cavity Results

 $g_{\rm seam}=3\times10^3\,{\rm S/m},\, \textit{R}_{s}=60\,\mu\Omega,$ Al alloy (6061) and Al4N, Etched data from^{10}

¹⁰T. Brecht, PhD Thesis, (2017).

N. Materise et al., nmaterise@mines.edu AVS 69 Quantum Workshop

Loss Extraction Approach Preliminary Measurements Next Steps

Expected Etched Cavity Losses

 $g_{
m seam}=3 imes10^3\,{
m S/m},\, {\it R_s}=60\,\mu\Omega,$ Al alloy (6061) and Al4N, Etched data from 11

¹¹T. Brecht, PhD Thesis, (2017).

N. Materise et al., nmaterise@mines.edu AVS 69 Quantum Workshop

Next Steps

- Measure the etched bare cavity, extract updated g_{seam}, R_s
- Measure the loaded cavity with a silicon wafer and extract its bulk loss
- Measure multiple wafers from different boules, manufacturers, pre-fabrication processing
- \blacktriangleright Improve $\lambda/4$ choke to reduce seam loss to allow measurements of low loss sapphire wafers

Acknowledgements

- We acknowledge funding from the Graduate Fellowship for STEM Diversity, NSF grant PHY-1653820, ARO grant No. W911NF-18-1-0125 and W911NF-18-1-0115, and Google. This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract number DE-AC02-07CH11359.
- We would like to thank Gus Floerchinger for assistance with the mechanical design of the cavity and Tommy Guess and Scott Hardman for useful discussions.

References

- Suhas Ganjam et al. "Surpassing millisecond coherence times in on-chip superconducting quantum memories by optimizing materials, processes, and circuit design". In: arXiv e-prints, arXiv:2308.15539 (Aug. 2023), arXiv:2308.15539. DOI: 10.48650/arXiv.2308.15539. arXiv: 2308.15539 [quant-ph].
- J. Bourhill et al. "Low-Temperature Properties of Whispering-Gallery Modes in Isotopically Pure Silicon-28". In: Phys. Rev. Appl. 11 (4 Apr. 2019), 044044. DOI: 10.1103/PhysRevApplied.11.044044.
- J. Krupka et al. "Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials". In: IEEE Transactions on Microwave Theory and Techniques 47.6 (1999), 752. DOI: 10.1109/22.769347.
- [4] Alexander P. Read et al. "Precision Measurement of the Microwave Dielectric Loss of Sapphire in the Quantum Regime with Parts-per-Billion Sensitivity". In: Phys. Rev. Appl. 19 (3 Mar. 2023), 034064. DOI: 10.1103/PhysRevApplied.19.034064.
- M. Checchin et al. "Measurement of the Low-Temperature Loss Tangent of High-Resistivity Silicon Using a High-Q Superconducting Resonator". In: Phys. Rev. Appl. 18 (3 Sept. 2022), 034013. DOI: 10.1103/PhysRevApplied.18.034013.
- [6] G. L. Ragan. Microwave Transmission Line Circuits. Vol. 9. MIT Radiation Laboratory. McGraw Hill, New York, 1948.
- [7] T. Brecht. "Micromachined Quantum Circuits". PhD thesis. Yale University, 2017.
- [8] J. Gao. "The Physics of Superconducting Microwave Resonators". PhD thesis. California Institute of Technology, 2008.
- W. Woods et al. "Determining Interface Dielectric Losses in Superconducting Coplanar-Waveguide Resonators". In: Phys. Rev. Applied 12 (1 July 2019), 014012. DOI: 10.1103/PhysRevApplied.12.014012.

Preliminary Measurements Next Steps Additional Slides

Transene A Etch

Preliminary Measurements Next Steps Additional Slides

External Coupling Quality Factor Simulations

