Tunable Capacitor For Superconducting Qubits Using an InAs/InGaAs Heterostructure

C30: I/O, Packaging, & 3D Integration for Superconducting and Semiconductor Qubits I

Nick Materise¹, Matthieu Dartiailh², Javad Shabani², Eliot Kapit¹

¹Colorado School of Mines, Department of Physics

²Center for Quantum Phenomena, Department of Physics, New York University

March 15, 2021

Voltage vs. Flux Biased Couplers

Voltage-controlled coupler¹

Flux-tunable coupler²

¹See A37.00009, P29.00013

²Adapted from J. Martinis, SQuInT 2020

Voltage vs. Flux Biased Couplers

Voltage-controlled coupler¹

- + 2nd order sensitive to voltage bias
- + No heating introduced by voltage bias
- + Minimal cross-talk expected

- 1st order sensitive to flux bias
- Current biases can heat system
- Cross-talk from stray magnetic fields

¹See A37.00009, P29.00013

²Adapted from J. Martinis, SQuInT 2020

Voltage vs. Flux Biased Couplers

Voltage-controlled coupler¹

- + 2nd order sensitive to voltage bias
- + No heating introduced by voltage bias
- + Minimal cross-talk expected
- Not part of cQED fab, yet
- Dielectric loss from 2DEG possible

- 1st order sensitive to flux bias
- Current biases can heat system
- Cross-talk from stray magnetic fields
- + Compatible with cQED fab
- + Loss from distributed capacitors

²Adapted from J. Martinis, SQuInT 2020

¹See A37.00009, P29.00013

Device Design & Semiconductor Simulations

Device Design & Semiconductor Simulations

- Electron densities calculated from equilibrium solutions to the drift-diffusion equations with Fermi-Dirac statistics in COMSOL
- 2DEG confinement included with density gradients modifying the equilibrium electron densities³
- Electrostatic charge conservation applied to InAIAs, SiO₂, and air-gap dielectric regions

³Ancona, Journal of Computational Electronics **10**, 65 (2011).

Device Design & Semiconductor Simulations

- Electron densities calculated from equilibrium solutions to the drift-diffusion equations with Fermi-Dirac statistics in COMSOL
- 2DEG confinement included with density gradients modifying the equilibrium electron densities³
- Electrostatic charge conservation applied to InAIAs, SiO₂, and air-gap dielectric regions
- Electron densities for three gate configurations

Capacitance Matrix DC Calculations

- Simplify geometry into perfect electric conductors and ideal dielectrics in the fully conducting / depleted limits of the 2DEG
- End-to-end capacitance limited by air-gap capacitors (enlarged to reduce aspect ratio in COMSOL simulations)

Capacitance Matrix DC Calculations

- Simplify geometry into perfect electric conductors and ideal dielectrics in the fully conducting / depleted limits of the 2DEG
- End-to-end capacitance limited by air-gap capacitors (enlarged to reduce aspect ratio in COMSOL simulations)

Fully Depleted Single Gate

Capacitance Matrix DC Calculations

- Simplify geometry into perfect electric conductors and ideal dielectrics in the fully conducting / depleted limits of the 2DEG
- End-to-end capacitance limited by air-gap capacitors (enlarged to reduce aspect ratio in COMSOL simulations)

Device Design & Semiconductor Simulations Capacitance Matrix DC Calculations Conductance Matrix Calculations

Capacitance Matrix DC Calculations

 Solve Poisson's equation with the charge continuity equation in 2D

 $-\nabla \cdot \boldsymbol{d} \left(\varepsilon_0 \nabla \boldsymbol{V} - \mathsf{P}\right) = \rho$

Extract Maxwell capacitance matrix

$$\begin{pmatrix} Q_1 \\ Q_2 \\ \vdots \\ Q_N \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} & \dots & C_{1N} \\ C_{21} & C_{22} & \dots & C_{2N} \\ \vdots & \vdots & & \vdots \\ C_{N1} & C_{N2} & \dots & C_{NN} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{pmatrix}$$

▶ On/off ratio of $C_{12}^{on} / C_{12}^{off} = 30.8 \text{ aF} / 0.199 \text{ aF} \approx 160!$

Conductance Matrix Calculations

Solve time harmonic equations

$$\begin{aligned} \nabla \cdot (\sigma \mathsf{E} + \mathsf{J}_e) + i \omega \rho &= \mathsf{0}, \\ \nabla \cdot \mathsf{D} &= \rho \end{aligned}$$

Use terminal current, voltage solutions to compute admittance matrix, Y

$$\begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_N \end{pmatrix} = \begin{pmatrix} Y_{11} & Y_{12} & \dots & Y_{1N} \\ Y_{21} & Y_{22} & \dots & Y_{2N} \\ \vdots & \vdots & & \vdots \\ Y_{N1} & Y_{N2} & \dots & Y_{NN} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_N \end{pmatrix}$$
$$Y = \mathsf{G} + i\omega\mathsf{C}$$

F	ully	Dep	lete	d (3	Ga	tes	5)
1							25
2							20
3							الا 15
4							ى 10
5							5
-	1	Ź	3	4	5		
F	ully	Con	duc	ting	(3 (Gat	tes)
F 1	ully 23	Con 23	duc 24.3	ting 24.3	(3 (21	Gat	tes)
F 1 2	ully 23 23	23 23	24.3 24.3	<u>ting</u> 24.3 24.3	(3 (21 21	Gat	tes)
F 1 2 3	23 23 23 24.3	Con 23 23 24.3	24.3 24.3 25.7	ting 24.3 24.3 25.7	(3 (21 21 22.2	Gat	tes)
F 1 2 3 4	ully 23 23 24.3 24.3	Con 23 23 24.3 24.3	duc 24.3 24.3 25.7 25.7	ting 24.3 24.3 25.7 25.7	(3 (21 22.2 22.2	Gat	tes)
F 1 2 3 4 5	ully 23 23 24.3 24.3 24.3	Con 23 23 24.3 24.3 24.3	duc 24.3 24.3 25.7 25.7 25.7	ting 24.3 24.3 25.7 25.7 25.7	(3 (21 21 22.2 22.2 22.2	Gat	tes)

Dielectric Loss Estimation

• Estimation of dielectric loss-limited $T_1^{4,5}$

$$T_1^{-1} = \frac{\omega}{Q} = \omega \sum_j \frac{p_j}{Q_j} + \Gamma_0, Q_j^{-1} = \tan \delta_j$$
$$p_j = \frac{t_j \varepsilon_{1,j} \int_{S_j} |\mathsf{E}|^2 \, dS}{\int_V |\mathsf{E}|^2 \, dV}$$

	t _j [nm]	Pj	tan δ_j	T_1 [μ s]
InGaAs	10	2.08E-5	4.8E-5	3190
InAs	4	3.18E-5	4.8E-5	20800
InGaAs	4	2.86E-5	4.8E-5	23200
InAlAs	20	5.64E-4	4.8E-5	1180
SiO ₂ ⁷	50	4.44E-3	2.00E-3	3.58
Total	-	-	-	3.57

- III-V loss tangents approximated with GaAs⁶
- Limited by SiO₂, pending measurement of III-Vs

⁴Wenner et al., Applied Physics Letters **99**, 113513 (2011).

⁵Wang et al., Applied Physics Letters **107**, 162601 (2015).

⁶McRae et al., arXiv e-prints, arXiv:2009.10101 (2020).

⁷Li et al., IEEE Transactions on Applied Superconductivity 23, 1501204 (2013).

Matrix Element Extraction – Energy Participation Ratios

Two Transmon + Coupler HFSS Model [Insets: Junctions and Coupler Enlarged]

- ▶ HFSS Eigenmodes \rightarrow EPR \rightarrow Matrix Elements^{8,9}
- Josephson junction inductances, capacitances as inputs
- Coupler modeled as lumped element capacitor

⁹Minev et al., arXiv e-prints, arXiv:2010.00620 (2020).

⁸Minev, arXiv e-prints, arXiv:1902.10355 (2019).

Matrix Element Extraction – Energy Participation Ratios Two Transmon + Coupler Eigenmodes

Figure: Electric field norm of first three eigenmode solutions. (a) 5.9 GHz, (b) 6.1 GHz, and (c-e) 8.6 GHz; scaled views of (c) qubit 1, (d) coupling element, and (e) qubit 2 electric field norms of third eigenmode.

⁸Minev, arXiv e-prints, arXiv:1902.10355 (2019).

⁹Minev et al., arXiv e-prints, arXiv:2010.00620 (2020).

N. Materise et al., nmaterise@mines.edu Tunable Capacitive Coupler, C30.00008

- ▶ HFSS Eigenmodes \rightarrow EPR \rightarrow Matrix Elements^{8,9}
- Josephson junction inductances, capacitances as inputs
- Coupler modeled as lumped element capacitor

Matrix Element Extraction – Energy Participation Ratios

Mode	$\omega/2\pi$	Q		$\chi/2\pi$	
No.	[GHz]			[MHz]	
1 (d)	5.667	4.5E8	226	62.5	0.965
2 (d)	5.838	1.3E9	62.5	226	1.11
3 (d)	8.614	1.8E13	0.965	1.11	0.002
1 (c)	5.669	4.5E8	223	67.1	0.974
2 (c)	5.840	1.3E9	67.1	223	1.12
3 (c)	8.612	1.8E13	0.974	1.12	0.002

Table: Extracted matrix elements from energy participation ratio calculations for values of R_{12} , C_{12} in the fully depleted (d) and fully conducting (c) limits of the 2DEG. Diagonal entries of χ are scaled by 1/2 to denote the anharmonicities.

- ▶ HFSS Eigenmodes \rightarrow EPR \rightarrow Matrix Elements^{8,9}
- Josephson junction inductances, capacitances as inputs
- Coupler modeled as lumped element capacitor
- Parametric sweep over the coupler capacitance to extract self- and cross-Kerr matrix elements

⁸Minev, arXiv e-prints, arXiv:1902.10355 (2019).

⁹Minev et al., arXiv e-prints, arXiv:2010.00620 (2020).

Matrix Element Extraction – Energy Participation Ratios

Mode	$\omega/2\pi$	Q		$\chi/2\pi$	
No.	[GHz]			[MHz]	
1 (d)	5.667	4.5E8	226	62.5	0.965
2 (d)	5.838	1.3E9	62.5	226	1.11
3 (d)	8.614	1.8E13	0.965	1.11	0.002
1 (c)	5.669	4.5E8	223	67.1	0.974
2 (c)	5.840	1.3E9	67.1	223	1.12
3 (c)	8.612	1.8E13	0.974	1.12	0.002

Table: Extracted matrix elements from energy participation ratio calculations for values of R_{12} , C_{12} in the fully depleted (d) and fully conducting (c) limits of the 2DEG. Diagonal entries of χ are scaled by 1/2 to denote the anharmonicities.

- ▶ HFSS Eigenmodes \rightarrow EPR \rightarrow Matrix Elements^{8,9}
- Josephson junction inductances, capacitances as inputs
- Coupler modeled as lumped element capacitor
- Parametric sweep over the coupler capacitance to extract self- and cross-Kerr matrix elements
- Retain anharmonicities for exchange interaction matrix elements

⁹Minev et al., arXiv e-prints, arXiv:2010.00620 (2020).

⁸Minev, arXiv e-prints, arXiv:1902.10355 (2019).

Matrix Element Extraction – Exchange Interaction

Extract exchange Q_iQ_j interaction matrix elements C⁻¹/2 from^{10,11}

$$H = \frac{1}{2} Q^T C^{-1} Q + \sum_j E_{J_j} (1 - \cos \varphi_j)$$
$$C = \begin{pmatrix} C_1 + C_3 & -C_3 \\ -C_3 & C_2 + C_3 \end{pmatrix}$$
$$C_k = \frac{e^2}{2E_C} \simeq -\frac{e^2}{2\alpha_k} = -\frac{e^2}{2\chi_{kk}}$$

¹⁰Orlando et al., Phys. Rev. B **60**, 15398 (1999).

¹¹Koch et al., Phys. Rev. A **76**, 042319 (2007).

Matrix Element Extraction – Exchange Interaction

Extract exchange Q_iQ_j interaction matrix elements C⁻¹/2 from^{10,11}

Qubit Index	Matrix Elements	[MHz]
1 (d)	226	0.0005
2 (d)	0.0005	226
1 (c)	226	0.079
2 (c)	0.079	226

Table: Charge-charge (exchange) interaction matrix elements in the (d) depleting and (c) conducting limits of the 2DEG coupler.

$$H = \frac{1}{2} Q^T C^{-1} Q + \sum_j E_{J_j} (1 - \cos \varphi_j)$$
$$C = \begin{pmatrix} C_1 + C_3 & -C_3 \\ -C_3 & C_2 + C_3 \end{pmatrix}$$
$$C_k = \frac{e^2}{2E_C} \simeq -\frac{e^2}{2\alpha_k} = -\frac{e^2}{2\chi_{kk}}$$

 Exchange interaction matrix elements recover ~160 on/off ratio

¹¹Koch et al., Phys. Rev. A **76**, 042319 (2007).

¹⁰Orlando et al., Phys. Rev. B **60**, 15398 (1999).

Summary

- Capacitive couplers are drop-in replacements for their inductive counterparts
- We estimate on/off ratios of two orders of magnitude in two transmon geometry
- Dielectric loss dominated by SiO₂, pending experimental verification
- Opens the door for future semiconductor-superconducting hybrid systems

Acknowledgements

- We acknowledge support from the Graduate Fellowships for STEM Diversity, NSF grant No. PHY-1653820, ARO grant No. W911NF-18-1-0125 and LPS/ARO grant No. W911NF-18-1-0115
- We would like to thank Joel Howard, Bradley Lloyd, Paul Niyonkuru, David Rodríguez Pérez, Zhijie Tang, Meenakshi Singh, William Strictland, and Joseph Yuan for helpful discussions

References

- M. G. Ancona. "Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices". In: Journal of Computational Electronics 10.1 (June 2011), 65. DOI: 10.1007/s10825-011-0356-9.
- Jens Koch et al. "Charge-insensitive qubit design derived from the Cooper pair box". In: Phys. Rev. A 76 (4 Oct. 2007), 042319. DOI: 10.1103/PhysRevA.76.042319.
- D. Li et al. "Improvements in Silicon Oxide Dielectric Loss for Superconducting Microwave Detector Circuits". In: IEEE Transactions on Applied Superconductivity 23.3 (2013), 1501204.
- [4] C. R. H. McRae et al. "Dielectric loss in epitaxial Al/GaAs/Al trilayers for superconducting circuits". In: arXiv e-prints, arXiv:2009.10101 (Sept. 2020), arXiv:2009.10101. arXiv: 2009.10101 [physics.app-ph].
- Zlatko K. Minev. "Catching and Reversing a Quantum Jump Mid-Flight". In: arXiv e-prints, arXiv:1902.10355 (Feb. 2019), arXiv:1902.10355. arXiv: 1902.10355 [quant-ph].
- [6] Zlatko K. Minev et al. "Energy-participation quantization of Josephson circuits". In: arXiv e-prints, arXiv:2010.00620 (Oct. 2020), arXiv:2010.00620. arXiv: 2010.00620 [quant-ph].
- [7] T. P. Orlando et al. "Superconducting persistent-current qubit". In: Phys. Rev. B 60 (22 Dec. 1999), 15398. DOI: 10.1103/PhysRevB.60.15398.
- C. Wang et al. "Surface participation and dielectric loss in superconducting qubits". In: Applied Physics Letters 107.16 (2015), 162601. DOI: 10.1063/1.4934486. eprint: https://doi.org/10.1063/1.4934486.
- J. Wenner et al. "Surface loss simulations of superconducting coplanar waveguide resonators". In: Applied Physics Letters 99.11 (2011), 113513. DOI: 10.1063/1.3637047. eprint: https://doi.org/10.1063/1.3637047.