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Problem statement:
• Few dynamical models of 

superconducting circuits 
include noise processes 
derived from rigorous 
microphysical arguments

Problem Statement and Approach

Proposed approach:
• To develop models using 

quantum Langevin equations 
to include general 
descriptions for the bath or 
multiple baths and their 
interaction with the system

Embedding
microphysical
noise models into
superconduc ng
circuits

Linear superconduc ng circuit

First principles
bath model

FEM model of surface two level system 
device with ab initio bath – See Yaniv
Rosen’s talk, Friday 9:24 am, 501B and 
Keith Ray’s talk, Friday 12:15 pm, 408B
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Model system – 3 port, 3 stage Brune circuit

Solgun et al. Ann. Phys. 361 (2015)

Solgun, PhD Thesis, RWTH, (2015)
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Model system – 3 port, 3 stage Brune circuit

Mode 1 Mode 2 Mode 3

Linear Circuit Modes

• Linear part of 
the device is 
encapsulated 
in Brune circuit

Solgun et al. Ann. Phys. 361 (2015)

Solgun, PhD Thesis, RWTH, (2015)
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Model system – 3 port, 3 stage Brune circuit

Q1

Q2

Q3

Mode 1 Mode 2 Mode 3

Qubit 
Modes Linear Circuit Modes

• Linear part of 
the device is 
encapsulated 
in Brune circuit

• All non-linear 
elements are 
applied to the 
ports

Solgun et al. Ann. Phys. 361 (2015)

Solgun, PhD Thesis, RWTH, (2015)
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We derived the Langevin equations for a 
multiport Brune circuit Hamiltonian

Quantum Langevin equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Charges:

Fluxes:
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We derived the Langevin equations for a 
multiport Brune circuit Hamiltonian

Quantum Langevin equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Fluctuation (dephasing)
Dissipation (relaxation)

Charges:

Fluxes:
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We derived the Langevin equations for a 
multiport Brune circuit Hamiltonian

Quantum Langevin equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Fluctuation (dephasing)
Dissipation (relaxation)

Charges:

Fluxes:

Fluctuation dissipation
relation (FDR)
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We derived the Langevin equations for a 
multiport Brune circuit Hamiltonian

Quantum Langevin equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Fluctuation (dephasing)
Dissipation (relaxation)

Charges:

Fluxes:

Fluctuation dissipation
relation (FDR)

Embedding
microphysical
noise models into
superconduc ng
circuits

Linear superconduc ng circuit

First principles
bath model

Bilinear system-bath coupling drives leads 
to additive noise form of Langevin
equations and FDR

Bath System
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Charges:

Fluxes:
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Inductive coupling

Charges:

Fluxes:
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Inductive coupling

Charges:

Fluxes:

Josephson junction non-linearity
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Inductive coupling

Charges:

Fluxes:

Josephson junction non-linearity

Frequency shift
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Inductive coupling

Charges:

Fluxes:

Josephson junction non-linearity

Dissipative memory 
kernel

Frequency shift
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Inductive coupling

Charges:

Fluxes:

Capacitive coupling

Josephson junction non-linearity

Dissipative memory 
kernel

Frequency shift
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Markovian Limit

Inductive coupling

Charges:

Fluxes:

Capacitive coupling

Josephson junction non-linearity

Dissipative memory 
kernel

Frequency shift
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Mean equations of charge and flux

Mean equations

Cortes et al. J.Chem.Phys. 82 (6) 1985

Markovian Limit
We have simulated the Markovian 
dynamics of the Brune circuit for 
different choices of circuit parameters

Inductive coupling

Charges:

Fluxes:

Capacitive coupling

Josephson junction non-linearity

Dissipative memory 
kernel

Frequency shift
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Uncoupled system operators

Conclusion / Main observation: Charges and fluxes evolve as damped 
harmonic oscillators, dissipate at different rates



LLNL-PRES-XXXXXX

19

Symmetric nearest neighbors cross-talk

Conclusion / Main observation: Coupling introduces beat frequencies, 
energy in the uncoupled case is transferred from the JJ’s to the circuit
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All-to-all cross-talk

Conclusion / Main observation: Coupling introduces beat frequencies, 
energy in the uncoupled case is transferred from the JJ’s to the circuit

Symmetric Coupling Asymmetric Coupling
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Summary and future work

Summary
• Derived quantum Langevin equations for multiport circuit
• Developed and exercised software to numerically solve for 

Markovian dynamics of charge and flux

Future Work
• Simulate non-Markovian dynamics of charge and flux
• Derive higher order moments for c-number Langevin equations4

• Calculate fluctuations about the mean values
• Calculate two-time correlation functions to study correlated 

processes in circuits
• Apply the method to results of FEM model of physical devices
• Include experimental data in the calculations
• Exercise the approach on multiple bath models

4 W. Louisell, Quantum statistical properties of radiation, Wiley Series in

Pure and Applied Optics Series (John Wiley & Sons Canada, Limited, 1973).
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Additional / Old Slides
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Asymmetric tridiagonal coupling

Conclusion / Main observation: Asymmetries in capacitance 
matrix modify spectral content of circuit and qubit variables
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Analytic memory kernel – Ornstein-Uhlenbeck
random process, equations of motion
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Analytic memory kernel – Ornstein-Uhlenbeck
random process, dissipationless limit

Conclusion / Main observation: In this limit there is no dissipation
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Analytic memory kernel – Ornstein-Uhlenbeck
random process, non-Markovian limit

Conclusion / Main observation: Circuit DOF’s dissipate at a slower rate, JJ 
DOF’s exhibit more non-linearity
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Analytic memory kernel – Ornstein-Uhlenbeck
random process, non-Markovian

Conclusion / Main observation: The circuit DOF’s dissipate as harmonic 
oscillators and the JJ DOF’s transition to more damped behavior
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Analytic memory kernel – Ornstein-Uhlenbeck
random process, Markovian limit

Conclusion / Main observation: Both the circuit and JJ DOF’s dissipate, 
although at a slower rate, in a similar fashion as in the Markovian case
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Classical Langevin equation

The classical Langevin equation for the charges in the circuit can be written 
following the convention in 14

14 Cortes et al. J.Chem.Phys. 82 (6) 1985
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Classical fluctuation dissipation relation

To calculate the classical fluctuation dissipation relation, one needs to 
compute the two time correlation function

where the modified bath Hamiltonian has coordinates shifted from the 
original bath coordinates14

14 Cortes et al. J.Chem.Phys. 82 (6) 1985
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Classical fluctuation dissipation relation

Evaluating the integrals we arrive at an expression for the correlation function

We can identify the memory kernel and arrive at the fluctuation dissipation 
relation for the Brune multiport circuit coupled to a classical harmonic bath

where T is the temperature of the bath and kB is Boltzmann’s constant
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Quantum derivation

Starting from the classical Hamiltonians, we replace the variable with vectors 
of operators, expressed as sums over the elements of the coupling 
matrices13,14

The second term in the system Hamiltonian is the potential. It may contain 
non-linear terms describing Josephson junctions in the circuit as

We expand the Josephson potential to second order to simplify the analysis

13 Solgun et al. PRB, 90 134504 (2014)
14 Solgun, PhD Thesis, RWTH, (2015)
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Quantum derivation

Recall in the classical system that the charge and flux are canonically 
conjugate variables. We express this relationship quantum mechanically with 
the commutation relation1

The equations of motion in the Heisenberg picture rely on these 
commutation relations along with those describing the bath degrees of 
freedom. For a harmonic bath we have

with bosonic creation and annihilation operators given by

1 Burkard et al. PRB, 69 064503 (2004)
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Quantum derivation

The interaction Hamiltonian between the system and the bath degrees of 
freedom follows a similar bilinear model as in the classical case

Using these relations, we solve for the quantum Langevin equation for each 
charge in the circuit14

14 Cortes et al. J.Chem.Phys. 82 (6) 1985
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Quantum Langevin equation

The quantum Langevin equation for a charge on the k-th capacitor in the k-th
multiport Brune stage is given in 14 by

where,

14 Cortes et al. J.Chem.Phys. 82 (6) 1985
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Quantum Fluctuation Dissipation Relation

We are now interested in calculated the two time correlation function of the 
fluctuating force to identify the fluctuation dissipation relation. First, we will 
define a modified bath with operators constructed by Bogoliubov
transformation14

14 Cortes et al. J.Chem.Phys. 82 (6) 1985
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Quantum Fluctuation Dissipation Relation

To compute the expectation operators, we follow Cortes et al. and take the 
density matrix of the bath to describe our Gaussian random operator as14

with the expectation values of the shifted bath operators are then given by

and the two time correlation function reads

14 Cortes et al. J.Chem.Phys. 82 (6) 1985
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Quantum Fluctuation Dissipation Relation

To relate the two time correlation function to the memory kernel, we 
calculate the symmetrized correlation function14

The fluctuation dissipation relation then follows14

14 Cortes et al. J.Chem.Phys. 82 (6) 1985
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Coupled quantum equations of motion

The charge and flux operators’ time evolution are coupled through the 
derivative of the flux in the Langevin equation. This leads to the following 
coupled ordinary differential equations (ODE’s)

We note that the right hand side of the first equation is zero centered, e.g. it 
has zero mean. This simplifies the calculation of the mean value equations, or 
the first moment equations.
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Coupled quantum equations of motion

The mean equations of charge and flux operators

The equations above give the full non-Markovian dynamics of the system. We 
will look at the Markovian limit of these equations, where the memory kernel 
behaves as a delta function or the fluctuation-dissipation relation describes a 
white noise source.
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non-Markovian Equations

We will now evaluate the sums over the bath coordinates as integrals over a 
continuum of modes, starting with the memory kernel. A DeBye density of 
states, g(⍵ ), is chosen to illustrate partially non-trivial integration of the 
memory kernel.

The time dependent result is a sinc function, a damped, oscillating function 
symmetric about t=𝜏, whose limit is unity at t=𝜏.
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non-Markovian Equations

Evaluating the integral in the frequency shift with the same density of states 
and collecting all of the coefficients gives the mean charge equation

The new damping parameter is scaled by the coefficients by integrating over 
all of the bath modes. This scaled parameter is lumped together in the 
numerical implementation of the equations of motion.
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Markovian limit

We would like to show that the kernel of the integral on the right hand side of 
the previous equation for the charges acts like a delta function in some limit, 
e.g. the sifting theorem and normalization should hold15

15 Arfken & Weber, Essential Mathematical Methods for Physicists
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Markovian limit

Plugging in the modified memory kernel into the integral in the charge 
equation of motion and taking limits of integration out to infinity (ignoring 
the small errors) and applying the sifting theorem gives the Markovian 
equations of motion

Next, we solve this system of equations numerically using the GNU Scientific 
Library (libgsl) ODE solver tools in several limits for a model single stage 
multiport Brune circuit
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Belevitch transformer structure
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