
Chapter 10
An Introduction to Superconducting
Qubits and Circuit Quantum
Electrodynamics

Nicholas Materise

Abstract Superconducting qubits have matured from platforms demonstrating and
manipulating macroscopic coherent quantum states to realizing exotic quantum
states, running surface error correction codes, and single photon detection to name
a few recent milestones. This article will review the fundamentals of circuit QED
related to the design and simulation of superconducting qubits.
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10.1 Introduction

Superconducting qubits and circuit quantum electrodynamics have enabled design
of solid state sources of quantum information. The performance of these devices
has scaled exponentially over the last 15 years, in terms of their energy relaxation
and dephasing times, drawing interest from adjacent communities including the
Axion Dark Matter Experiment (ADMX). Recently, superconducting qubits have
been suggested to be used as signal-photon detectors which could greatly increase
scan rates of axion haloscopes, such as ADMX, at higher frequencies. The goal of
this article is to give members of the ADMX community an introduction to some of
the models used to analyze and design superconducting qubits. This review is not an
exhaustive coverage of the field, but it aims to guide the reader to relevant literature
and analysis techniques that closely follow experiment.
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10.2 Superconducting Qubit Circuit Models

A qubit is a two level system or a system whose controllable quantum dynamics
involve its two lowest lying energy levels. Nature provides several forms of qubits
or carriers of quantum information including single photons, trapped ions, and
atoms in high finesse cavities. Superconducting qubits realize artificial atoms
with engineered energy levels using the non-linearity of Josephson junctions and
surrounding microwave circuitry [2]. The quantum dynamics of these systems
follows that of a damped and driven anharmonic oscillator whose anharmonicity
is controlled by choice of circuit parameters, e.g. linear capacitance and inductance
of the Josephson junction [14]. For experimental design and control, practitioners
draw from the Jaynes-Cummings model and its variants from cavity quantum
electrodynamics (QED) [8, 14]. Circuit quantum electrodynamics borrows the
application of second quantized Hamiltonians from atomic optics via a standardized
procedure for quantizing passive circuit. This section will introduce simple models
for Josephson junctions and their role in superconducting qubits. We will then
discuss circuit quantization methods and Black box quantization techniques used
to obtain second quantized Hamiltonians.

10.2.1 Non-linearity in Superconducting Qubits

The operational modes of superconducting qubits vary by their energy spectra,
where non-linearity plays a role in realizing accessible and isolated states. If we
consider the lowest two levels of the quantum harmonic oscillator to be the ground
and excited states of a qubit (|g〉 , |e〉), the energies for the two states are separated
by integer multiples of �ω. The classical electric circuit model for an oscillator is the
LC circuit, shown in Fig. 10.1. We will refer to this model in Sect. 10.2.3 when we
derive the second quantized form of the Hamiltonian for an LC circuit. Figure 10.1
compares the LC oscillator circuit to an anharmonic qubit, the transmon. Notice that
the spacing between the excited state |e〉 and the next highest state |f 〉 is smaller
than the spacing between |g〉 and |e〉. In more anharmonic oscillators, the spacing
is larger, further isolating the qubit states from the other states of the oscillator. The
transmon trades off its anharmonicity for reduced sensitivity to charge noise [2].

An anharmonic oscillator-based superconducting qubit inherits its non-linearity
from Josephson junctions, where the non-linearity is tunable through fabrication and
microwave circuit design. To develop some intuition for the dynamics of Josephson
junctions, we will discuss classical circuit models for the device and their role in
superconducting qubits.



10 An Introduction to Superconducting Qubits and Circuit Quantum Electrodynamics 89

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

φ

0

50

100

150

200

E
ig

en
en

er
gi

es

|0h̄ω

|1h̄ω

|2

Harmonic Oscillator Energies

(a)

φ

0

50

100

150

200

E
ig

en
en

er
gi

es

|gh̄ω

|eh̄ (ω − α)

|f

Anharmonic Oscillator Energies

(b)

(c) (d)

Fig. 10.1 Comparison of the quantum harmonic oscillator with an harmonic oscillator. (a) and (b)
give the eigenenergies of the two oscillators, where the horizontal lines are the eigenenergies and
the dashed lines represent notional potentials. (c) and (d) are the corresponding circuit models for
an LC circuit and a transmon qubit [10]

10.2.2 Classical Circuit Models of Josephson Junctions

There are several phenomenological models for Josephson junctions that are
motivated by the underlying device physics and limits of the electric circuit analogs.
We will review the Resistive and Capacitively Shunted Junction (RCSJ) model as
outlined in [5].

In Fig. 10.2 above, the left most circuit shows a current-driven Josephson
junction with drive current, Id . The junction is approximated as the parallel
combination of an inductor LJ , conductance GN , and capacitor CJ . We replace the
inductor and conductance with two voltage controlled current sources (VCCS’s),
GJ (ϕ),GN(V ), where we use the Gxxx VCCS notation from SPICE [11]. Kirch-
hoff’s current law at the node joining the three circuit elements with the drive current
source reads [5]

Id(t) = Ic sin ϕ + V GN(V ) + CJ

dV

dt
(10.1)
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Fig. 10.2 (a) Circuit diagram
for a current driven Josephson
junction, (b) RCSJ circuit
model, (c) equivalent circuit
with current sources replacing
the conductance GN and
inductor LJ

GN(V ) =
{

0, |V | ≤ 2�0/e

1/RN, |V | ≥ 2�0/e
(10.2)

All occurrences of V refer to the voltage across the three elements representing
the Josephson junction from the node of their intersection to ground. The supercon-
ducting gap energy at zero temperature, �0, gives the voltage where the junction
transitions from superconducting to a normal metal with a normal resistance RN , see
Eq. (10.2). Ic is the critical current of the Josephson junction. This is the maximum
current through the Josephson junction and sets the scale for the supercurrent,
Ic sin ϕ in Eq. (10.2). For finite temperatures, Gross et al. [5] gives the temperature
dependent conductance in the RCSJ based on the density of states of quasiparticles
in the Josephson junction [5].

The VCCS GJ (ϕ) varies sinusoidally with the junction phase, ϕ, which is a
function of the voltage across the junction and given by the Josephson equation

V = Φ0

2π

dϕ

dt
(10.3)

Φ0 = h

2e
≡ Magnetic flux quantum

If we substitute Eq. (10.3) into Eq. (10.1), we arrive at a second order linear
differential equation in the phase variable, ϕ

Id(t) = Φ0

2π
CJ

d2ϕ

dt2
+ Φ0

2π

dϕ

dt
GN

(
Φ0

2π

dϕ

dt

)
+ Ic sin ϕ (10.4)

This equation is analogous to a driven pendulum, where the capacitance and
conductance are proportional to the mass and damping parameter for the pendulum,
respectively [14]. For practical, classical simulations of Josephson junctions, the two
VCCS model shunted by the junction capacitance is sufficient to produce hysteresis
in the current-voltage (IV) characteristic curve. Numerical simulation of the circuit
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in Fig. 10.2 is well suited for SPICE [11] circuit solvers or coupled to geometries in
multiphysics codes such as COMSOL.1

The RCSJ model is an intuitive model for the behavior of a Josephson junction
with an applied dc or ac drive current, though it is not as suitable for supercon-
ducting qubit design and simulation. Circuit Quantum Electrodynamics provides
a framework analyzing such systems with the language of atomic optics or cavity
quantum electrodynamics. We will examine the key features of circuit QED and its
utility in the design and simulation of superconducting qubits.

10.2.3 Circuit Quantum Electrodynamics

Circuit quantum electrodynamics (QED) combines microwave engineering, circuit
analysis, and quantum optics. Fabry-Perot cavities from optics are replaced by
resonant microwave cavities or lumped element microwave resonators in circuit
QED. The procedure for obtaining the quantized Hamiltonian and subsequent
dynamics of the system follows first from a classical treatment, then quantization
of the classical variables as operators and relating those operators to bosonic single-

mode raising and lowering operators
{
â

(†)
i

}
.

10.2.3.1 Quantizing the LC Oscillator

We return to the LC oscillator circuit in Fig. 10.1 and write the Lagrangian for the
circuit in terms of the flux variable φ which is treated as the generalized coordinate
for the system [4].

L (
φ, φ̇

) = 1

2
Cφ̇2 − 1

2L
φ2 (10.5)

We treat the charge q on the capacitor as the conjugate momentum and perform
a Legendre transformation to obtain the Hamiltonian as a function of both q and φ.

q = ∂L
∂φ̇

= Cφ̇ �⇒ φ̇2 = q2/C2

H (q, φ) = φ̇q − L = 1

2
Cφ̇2 + 1

2L
φ2

H = 1

2C
q2 + 1

2L
φ2 (10.6)

1COMSOL Multiphysics, www.comsol.com.

www.comsol.com
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Following the example in Chapter 3 of [14], the charge and flux variables are

quantized by converting them to operators with the commutation relation
[
φ̂, q̂

]
=

i�. If we take the resonance frequency of the LC circuit to be ω = (LC)−1/2 and
replace 1/L in the potential term of the Hamiltonian, we arrive at the familiar form
for a harmonic oscillator with mass C.

H → Ĥ = q̂2

2C
+ 1

2
Cω2φ̂2 (10.7)

We define raising and lowering operators for this quantum harmonic oscillator in
analogy to those used in the one-dimensional model and write the second quantized
form of the Hamiltonian.

q̂ = −i

√
�ωC

2

(
â − â†

)
, φ̂ =

√
�

2ωC

(
â + â†

)
(10.8)

Ĥ = �ω
(
â†â + 1/2

)
(10.9)

10.2.3.2 Black Box Circuit Quantization

In the previous section, we covered a procedure for quantizing an LC oscillator cir-
cuit which leads to an approximate generalization for any device given its frequency
dependent impedance function. This approach connects full wave electromagnetic
simulations of microwave circuits to their quantum mechanical analogs in circuit
QED. Given a single port S-parameter as a function of frequency, one can obtain
the impedance at the port by the transformation

Z = (1 + S) (1 − S)−1 (10.10)

1 ≡ identity matrix with same dimensions as S

Following the Black box quantization methods outlined in [12, 15], the
impedance function, Z(ω) can be expressed as a pole-residue expansion in the
complex frequency s = jω, where j = −√−1, following the electrical engineering
convention.

Z(s) =
M∑

k=1

rk

s − sk
+ d + es (10.11)

{rk = ak + jbk} ≡ residues, {sk = ξk + jωk} ≡ poles

The above rational function can be obtained by a least squares fit of the original
impedance using the Vector Fit software outlined in [6] and available at The Vector
Fitting Web Site – SINTEF, https://www.sintef.no/projectweb/vectfit/. If we take

https://www.sintef.no/projectweb/vectfit/
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the case where d = 0 and the pole at s → ∞ vanishes or e = 0 and perform the
following partial fraction expansion and approximation for the k-th term in the series
and we find the k-th term is the impedance for a parallel RLC oscillator circuit.

Zk(s) = rk

s − sk
= rk

s − sk
+ r∗

k

s − s∗
k

� 2aks

s2 − 2ξks + ω2
k

�⇒ Zk(s) =
ωkrk
Qk

s

s2 + ωk

Qk
s + ω2

k

(10.12)

ωk = (LkCk)
−1/2 ,Qk = ωkRkCk = −ωk/2ξk, Rk = −ak/ξk

The total impedance, Z(s) is a series combination of RLC oscillators and if we
take the dissipationless limit by ignoring the resistances, we can treat Z(s) as a series
combination of LC circuits and apply the same analysis from Sect. 10.2.3.1 to each
subcircuit. If we shunt the resulting circuit, with a single Josephson junction, we can
obtain a simple model for the Hamiltonian of a qubit coupled to a superconducting
resonator with M-modes. For a full derivation of the non-linear components of the
Hamiltonian Ĥnl, see [12]; we reproduce the salient features here.

Ĥ = Ĥ0 + Ĥnl (10.13)

Ĥ0 =
∑

i

�ωiâ
†
i âi , Ĥnl = EJ

(
1 − cos ϕ̂ − ϕ̂2

2

)
(10.14)

Ĥnl ≈ −1

2

∑
i

αi â
†2
i â2

i −
∑
i �=j

χij â
†
i âi â

†
j âj (10.15)

ϕ̂ = 2π

Φ0

∑
i

φ̂i = 2π

Φ0

∑
i

√
�

2ωiCi

(
âi + â

†
i

)
(10.16)

The Hamiltonian above is referred to as the dispersive Hamiltonian for a weakly
anharmonic qubit coupled to a series of harmonic modes. In the non-linear term,
Ĥnl, the first contribution describes the anharmonicities of those modes and the

Fig. 10.3 Series combination of RLC circuits shunted by a single Josephson junction representing
the black box circuit from Eq. (10.12) and similar in design to the circuit in [3]



94 N. Materise

qubit mode or self-Kerr terms and the second term gives the cross-Kerr terms [12].
Both {αi} and {χij } are experimentally observable, tying this model for qubit-circuit
interactions to physical devices (Fig. 10.3).

10.3 Summary

The models used to describe the operation of superconducting qubits follow intuitive
modifications to the familiar damped and driven oscillator systems from classical
and quantum mechanics. These models arise from careful application of circuit
QED to incorporate the quantum effects of macroscopic structures in microwave
circuits. Although the dispersive Hamiltonian describes many superconducting
qubit systems in quantum information experiments, this article did not apply the
model to the problem of single photon counting. For more resources related to
circuit QED and single photon counting, please refer to [1, 4, 7, 9, 13, 14].
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